conients

Preface xv
Acknowledgments xvii
Mathematical Preparation xix
Notation xxi
1 BAILC PRDBABLIITY THEORY 1
1.1 Introduction 1
1.2 Outcomes and Events 1
1.3 Probability Function 2
1.4 Properties of the Probability Function 4
1.5 Equally Likely Outcomes 5
1.6 Joint Events 5
1.7 Conditional Probability 6
1.8 Independence 7
1.9 Law of Total Probability 10
1.10 Bayes Rule 10
1.11 Permutations and Combinations 11
1.12 Sampling with and without Replacement 13
1.13 Poker Hands 15
1.14 Sigma Fields* 16
1.15 Technical Proofs* 17
1.16 Exercises 18
RANDOM VARABBES 22
2.1 Introduction 22
2.2 Random Variables 22
2.3 Discrete Random Variables 22
2.4 Transformations 24
2.5 Expectation 25
2.6 Finiteness of Expectations 26
2.7 Distribution Function 28
2.8 Continuous Random Variables 29
2.9 Quantiles 30
2.10 Density Functions 31
2.11 Transformations of Continuous Random Variables 33
2.12 Non-Monotonic Transformations 35
2.13 Expectation of Continuous Random Variables 37
2.14 Finiteness of Expectations 38
2.15 Unifying Notation 39
2.16 Mean and Variance 39
2.17 Moments 41
2.18 Jensen's Inequality 42
2.19 Applications of Jensen's Inequality ${ }^{\star}$ 43
2.20 Symmetric Distributions 45
2.21 Truncated Distributions 45
2.22 Censored Distributions 47
2.23 Moment Generating Function 47
2.24 Cumulants 50
2.25 Characteristic Function 51
2.26 Expectation: Mathematical Details* 51
2.27 Exercises 52
3 PARAMEERIC IITTRBUTIONS 56
3.1 Introduction 56
3.2 Bernoulli Distribution 56
3.3 Rademacher Distribution 57
3.4 Binomial Distribution 57
3.5 Multinomial Distribution 58
3.6 Poisson Distribution 58
3.7 Negative Binomial Distribution 59
3.8 Uniform Distribution 59
3.9 Exponential Distribution 59
3.10 Double Exponential Distribution 60
3.11 Generalized Exponential Distribution 60
3.12 Normal Distribution 61
3.13 Cauchy Distribution 62
3.14 Student t Distribution 62
3.15 Logistic Distribution 63
3.16 Chi-Square Distribution 63
3.17 Gamma Distribution 64
$3.18 \quad F$ Distribution 64
3.19 Non-Central Chi-Square 65
3.20 Beta Distribution 65
3.21 Pareto Distribution 66
3.22 Lognormal Distribution 66
3.23 Weibull Distribution 67
3.24 Extreme Value Distribution 67
3.25 Mixtures of Normals 68
3.26 Technical Proofs* 70
3.27 Exercises 71
4 MUITIVARAIE IISTRBUTIONS 74
4.1 Introduction 74
4.2 Bivariate Random Variables 74
4.3 Bivariate Distribution Functions 74
4.4 Probability Mass Function 77
4.5 Probability Density Function 78
4.6 Marginal Distribution 80
4.7 Bivariate Expectation 81
4.8 Conditional Distribution for Discrete X 83
4.9 Conditional Distribution for Continuous X 85
4.10 Visualizing Conditional Densities 86
4.11 Independence 87
4.12 Covariance and Correlation 90
4.13 Cauchy-Schwarz Inequality 92
4.14 Conditional Expectation 93
4.15 Law of Iterated Expectations 95
4.16 Conditional Variance 96
4.17 Hölder's and Minkowski’s Inequalities* 98
4.18 Vector Notation 99
4.19 Triangle Inequalities* 100
4.20 Multivariate Random Vectors 101
4.21 Pairs of Multivariate Vectors 103
4.22 Multivariate Transformations 104
4.23 Convolutions 104
4.24 Hierarchical Distributions 105
4.25 Existence and Uniqueness of the Conditional Expectation* 108
4.26 Identification 108
4.27 Exercises 109
5 NORMAL AND RELAIEODISTRBUUTIONS 113
5.1 Introduction 113
5.2 Univariate Normal 113
5.3 Moments of the Normal Distribution 114
5.4 Normal Cumulants 114
5.5 Normal Quantiles 114
5.6 Truncated and Censored Normal Distributions 116
5.7 Multivariate Normal 117
5.8 Properties of the Multivariate Normal 118
5.9 Chi-Square, t, F, and Cauchy Distributions 119
5.10 Hermite Polynomials* 119
5.11 Technical Proofs* 120
5.12 Exercises 126
6 SAMPLNG 128
6.1 Introduction 128
6.2 Samples 128
6.3 Empirical Illustration 130
6.4 Statistics, Parameters, and Estimators 130
6.5 Sample Mean 131
6.6 Expected Value of Transformations 132
6.7 Functions of Parameters 133
6.8 Sampling Distribution 134
6.9 Estimation Bias 135
6.10 Estimation Variance 136
6.11 Mean Squared Error 137
6.12 Best Unbiased Estimator 138
6.13 Estimation of Variance 139
6.14 Standard Error 140
6.15 Multivariate Means 140
6.16 Order Statistics* 141
6.17 Higher Moments of Sample Mean* 142
6.18 Normal Sampling Model 144
6.19 Normal Residuals 144
6.20 Normal Variance Estimation 145
6.21 Studentized Ratio 146
6.22 Multivariate Normal Sampling 146
6.23 Exercises 146
7 LAN OF LAREE NUMBERS 149
7.1 Introduction 149
7.2 Asymptotic Limits 149
7.3 Convergence in Probability 150
7.4 Chebyshev’s Inequality 152
7.5 Weak Law of Large Numbers 153
7.6 Counterexamples 153
7.7 Examples 154
7.8 Illustrating Chebyshev's Inequality 154
7.9 Vector-Valued Moments 155
7.10 Continuous Mapping Theorem 155
7.11 Examples 157
7.12 Uniformity Over Distributions* 157
7.13 Almost Sure Convergence and the Strong Law* 159
7.14 Technical Proofs* 160
7.15 Exercises 162
8 CENTRAL LIMIT THEORY 165
8.1 Introduction 165
8.2 Convergence in Distribution 165
8.3 Sample Mean 166
8.4 A Moment Investigation 167
8.5 Convergence of the Moment Generating Function 167
8.6 Central Limit Theorem 168
8.7 Applying the Central Limit Theorem 169
8.8 Multivariate Central Limit Theorem 170
8.9 Delta Method 170
8.10 Examples 171
8.11 Asymptotic Distribution for Plug-In Estimator 172
8.12 Covariance Matrix Estimation 172
$8.13 t$-Ratios 173
8.14 Stochastic Order Symbols 173
8.15 Technical Proofs* 175
8.16 Exercises 176
9 ANAMCE: ASMMPTOICC HHEOYY 78
9.1 Introduction 178
9.2 Heterogeneous Central Limit Theory 178
9.3 Multivariate Heterogeneous Central Limit Theory 180
9.4 Uniform Central Limit Theory 180
9.5 Uniform Integrability 181
9.6 Uniform Stochastic Bounds 182
9.7 Convergence of Moments 182
9.8 Edgeworth Expansion for the Sample Mean 183
9.9 Edgeworth Expansion for Smooth Function Model 185
9.10 Cornish-Fisher Expansions 187
9.11 Technical Proofs* 188
10 MAXIMUM LKELIHOOD ESTIMATION 192
10.1 Introduction 192
10.2 Parametric Model 192
10.3 Likelihood 193
10.4 Likelihood Analog Principle 196
10.5 Invariance Property 197
10.6 Examples 197
10.7 Score, Hessian, and Information 202
10.8 Examples 204
10.9 Cramér-Rao Lower Bound 206
10.10 Examples 207
10.11 Cramér-Rao Bound for Functions of Parameters 208
10.12 Consistent Estimation 208
10.13 Asymptotic Normality 209
10.14 Asymptotic Cramér-Rao Efficiency 211
10.15 Variance Estimation 211
10.16 Kullback-Leibler Divergence 213
10.17 Approximating Models 214
10.18 Distribution of the MLE under Misspecification 215
10.19 Variance Estimation under Misspecification 216
10.20 Technical Proofs* 217
10.21 Exercises 222
11 MEHHOD OF MOMENTS 225
11.1 Introduction 225
11.2 Multivariate Means 225
11.3 Moments 226
11.4 Smooth Functions 227
11.5 Central Moments 230
11.6 Best Unbiased Estimation 231
11.7 Parametric Models 234
11.8 Examples of Parametric Models 234
11.9 Moment Equations 237
11.10 Asymptotic Distribution for Moment Equations 238
11.11 Example: Euler Equation 239
11.12 Empirical Distribution Function 241
11.13 Sample Quantiles 242
11.14 Robust Variance Estimation 245
11.15 Technical Proofs* 245
11.16 Exercises 247
12 NUMERICAL OPTIMIZATION 249
12.1 Introduction 249
12.2 Numerical Function Evaluation and Differentiation 249
12.3 Root Finding 252
12.4 Minimization in One Dimension 254
12.5 Failures of Minimization 258
12.6 Minimization in Multiple Dimensions 259
12.7 Constrained Optimization 266
12.8 Nested Minimization 267
12.9 Tips and Tricks 268
12.10 Exercises 269
13 HYPPTHEEISTEESTMG 270
13.1 Introduction 270
13.2 Hypotheses 270
13.3 Acceptance and Rejection 272
13.4 Type I and Type II Errors 274
13.5 One-Sided Tests 275
13.6 Two-Sided Tests 277
13.7 What Does "Accept \mathbb{H}_{0} " Mean about \mathbb{H}_{0} ? 278
13.8 t Test with Normal Sampling 280
13.9 Asymptotic t Test 281
13.10 Likelihood Ratio Test for Simple Hypotheses 282
13.11 Neyman-Pearson Lemma 283
13.12 Likelihood Ratio Test against Composite Alternatives 284
13.13 Likelihood Ratio and t Tests 285
13.14 Statistical Significance 286
13.15 p-Value 287
13.16 Composite Null Hypothesis 288
13.17 Asymptotic Uniformity 290
13.18 Summary 290
13.19 Exercises 291
14 CONFIEENCE INTERVALS 293
14.1 Introduction 293
14.2 Definitions 293
14.3 Simple Confidence Intervals 294
14.4 Confidence Intervals for the Sample Mean under Normal Sampling 294
14.5 Confidence Intervals for the Sample Mean under Non-Normal Sampling 295
14.6 Confidence Intervals for Estimated Parameters 296
14.7 Confidence Interval for the Variance 296
14.8 Confidence Intervals by Test Inversion 297
14.9 Use of Confidence Intervals 298
14.10 Uniform Confidence Intervals 299
14.11 Exercises 299
15 SHRRNKAGE ESTIMATION 302
15.1 Introduction 302
15.2 Mean Squared Error 302
15.3 Shrinkage 303
15.4 James-Stein Shrinkage Estimator 304
15.5 Numerical Calculation 305
15.6 Interpretation of the Stein Effect 306
15.7 Positive-Part Estimator 306
15.8 Summary 307
15.9 Technical Proofs* 308
15.10 Exercises 312
16. BAFESIAN METHODS 313
16.1 Introduction 313
16.2 Bayesian Probability Model 314
16.3 Posterior Density 315
16.4 Bayesian Estimation 315
16.5 Parametric Priors 316
16.6 Normal-Gamma Distribution 317
16.7 Conjugate Prior 318
16.8 Bernoulli Sampling 319
16.9 Normal Sampling 321
16.10 Credible Sets 324
16.11 Bayesian Hypothesis Testing 326
16.12 Sampling Properties in the Normal Model 327
16.13 Asymptotic Distribution 328
16.14 Technical Proofs* 329
16.15 Exercises 330
17 NONPARAMEETRIC DENSTIY ESTIMATION 332
17.1 Introduction 332
17.2 Histogram Density Estimation 332
17.3 Kernel Density Estimator 333
17.4 Bias of Density Estimator 336
17.5 Variance of Density Estimator 338
17.6 Variance Estimation and Standard Errors 339
17.7 Integrated Mean Squared Error of Density Estimator 339
17.8 Optimal Kernel 340
17.9 Reference Bandwidth 341
17.10 Sheather-Jones Bandwidth* 343
17.11 Recommendations for Bandwidth Selection 344
17.12 Practical Issues in Density Estimation 346
17.13 Computation 346
17.14 Asymptotic Distribution 347
17.15 Undersmoothing 347
17.16 Technical Proofs* 348
17.17 Exercises 351
18 EMPIRCAL PROCESS THEERY 352
18.1 Introduction 352
18.2 Framework 352
18.3 Glivenko-Cantelli Theorem 353
18.4 Packing, Covering, and Bracketing Numbers 354
18.5 Uniform Law of Large Numbers 358
18.6 Functional Central Limit Theory 359
18.7 Conditions for Asymptotic Equicontinuity 361
18.8 Donsker's Theorem 362
18.9 Technical Proofs* 365
18.10 Exercises 366
APPENDX: MATHEMATICC REFERENCE 367
A. 1 Limits 367
A. 2 Series 367
A. 3 Factorials 368
A. 4 Exponentials 369
A. 5 Logarithms 369
A. 6 Differentiation 369
A. 7 Mean Value Theorem 371
A. 8 Integration 372
A. 9 Gaussian Integral 373
A. 10 Gamma Function 374
A. 11 Matrix Algebra 374
References 377
Index 379

BASIC PROBABLIITY THEORY

1.1 1 NTROOUCTION

Probability theory is foundational for economics and econometrics. Probability is the mathematical language used to handle uncertainty, which is central for modern economic theory. Probability theory is also the foundation of mathematical statistics, which is the foundation of econometric theory.

Probability is used to model uncertainty, variability, and randomness. When we say that something is "uncertain", we mean that the outcome is unknown. For example, how many students will there be in next year's Ph.D. entering class at your university? "Variability" means that the outcome is not the same across all occurrences. For example, the number of Ph.D. students fluctuates from year to year. "Randomness" means that the variability has some sort of pattern. For example, the number of $\mathrm{Ph} . \mathrm{D}$. students may fluctuate between 20 and 30 , with 25 more likely than either 20 or 30 . Probability gives us a mathematical language to describe uncertainty, variability, and randomness.

I.2 OUTCOMES AND EVENTS

Suppose you take a coin, flip it in the air, and let it land on the ground. What will happen? Will the result be "heads" (H) or "tails" (T)? We do not know the result in advance, so we describe the outcome as random.

Suppose you record the change in the value of a stock index over a period of time. Will the value increase or decrease? Again, we do not know the result in advance, so we describe the outcome as random.

Suppose you select an individual at random and survey them about their economic situation. What is their hourly wage? We do not know in advance. The lack of foreknowledge leads us to describe the outcome as random.

We will use the following terms.
An outcome is a specific result. For example, in a coin flip, an outcome is either H or T . If two coins are flipped in sequence, we can write an outcome as HT for a head and then a tails. A roll of a six-sided die has the six outcomes $\{1,2,3,4,5,6\}$.

The sample space S is the set of all possible outcomes. In a coin flip, the sample space is $S=\{H, T\}$. If two coins are flipped, the sample space is $S=\{H H, H T, T H, T T\}$.

An event A is a subset of outcomes in S. An example event from the roll of a die is $A=\{1,2\}$.
The one-coin and two-coin sample spaces are illustrated in Figure 1.1. The event $\{H H, H T\}$ is illustrated by the ellipse in Figure 1.1(b).

Set theoretic manipulations are helpful in describing events. We will use the following concepts.

FIGURE 1.1 Sample space

Definition 1.1 For events A and B :

1. A is a subset of B, written $A \subset B$, if every element of A is an element of B.
2. The event with no outcomes $\varnothing=\{ \}$ is called the null or empty set.
3. The union $A \cup B$ is the collection of all outcomes that are in either A or B (or both).
4. The intersection $A \cap B$ is the collection of elements that are in both A and B.
5. The complement A^{c} of A are all outcomes in S which are not in A.
6. The events A and B are disjoint if they have no outcomes in common: $A \cap B=\varnothing$.
7. The events A_{1}, A_{2}, \ldots are a partition of S if they are mutually disjoint and their union is S.

Events satisfy the rules of set operations, including the commutative, associative, and distributive laws. The following theorem is useful.

Theorem 1.1 Partitioning Theorem. If $\left\{B_{1}, B_{2}, \cdots\right\}$ is a partition of S, then for any event A,

$$
A=\bigcup_{i=1}^{\infty}\left(A \cap B_{i}\right) .
$$

The sets $\left(A \cap B_{i}\right)$ are mutually disjoint.
A proof is provided in Section 1.15.

1.3 PROBABIIITY FUNCTION

Definition 1.2 A function \mathbb{P} which assigns a numerical value to events ${ }^{1}$ is called a probability function if it satisfies the following axioms of probability:

1. $\mathbb{P}[A] \geq 0$.

[^0]2. $\mathbb{P}[S]=1$.
3. If A_{1}, A_{2}, \ldots are disjoint, then $\mathbb{P}\left[\bigcup_{j=1}^{\infty} A_{j}\right]=\sum_{j=1}^{\infty} \mathbb{P}\left[A_{j}\right]$.

This textbook uses the notation $\mathbb{P}[A]$ for the probability of an event A. Other common notations include $P(A)$ and $\operatorname{Pr}(A)$.

Let us examine this definition. The phrase "a function \mathbb{P} which assigns a numerical value to events" means that \mathbb{P} is a function from the space of events to the real line. Thus probabilities are numbers. Now consider the axioms. The first axiom states that probabilities are nonnegative. The second axiom is essentially a normalization: the probability that "something happens" is 1 .

The third axiom imposes considerable structure. It states that probabilities are additive on disjoint events. That is, if A and B are disjoint, then

$$
\mathbb{P}[A \cup B]=\mathbb{P}[A]+\mathbb{P}[B] .
$$

Take, for example, the roll of a six-sided die which has the possible outcomes $\{1,2,3,4,5,6\}$. Since the outcomes are mutually disjoint, the third axiom states that $\mathbb{P}[1$ or 2$]=\mathbb{P}[1]+\mathbb{P}[2]$.

When using the third axiom, it is important to be careful that it is applied only to disjoint events. Take, for example, the roll of a pair of dice. Let A be the event " 1 on the first roll" and B the event " 1 on the second roll". It is tempting to write $\mathbb{P}[" 1$ on either roll"] $=\mathbb{P}[A \cup B]=\mathbb{P}[A]+\mathbb{P}[B]$, but the second equality is incorrect, since A and B are not disjoint. The outcome " 1 on both rolls" is an element of both A and B.

Any function \mathbb{P} which satisfies the axioms is a valid probability function. Take the coin flip example. One valid probability function sets $\mathbb{P}[H]=0.5$ and $\mathbb{P}[T]=0.5$. (This is typically called a fair coin.) A second valid probability function sets $\mathbb{P}[H]=0.6$ and $\mathbb{P}[T]=0.4$. However, a function which sets $\mathbb{P}[H]=-0.6$ is not valid (it violates the first axiom), and a function which sets $\mathbb{P}[H]=0.6$ and $\mathbb{P}[T]=0.6$ is not valid (it violates the second axiom).

While the definition states that a probability function must satisfy certain rules, it does not describe the meaning of probability. The reason is because there are multiple interpretations. One view is that probabilities are the relative frequency of outcomes, as in a controlled experiment. The probability that the stock market will increase is the frequency of increases. The probability that an unemployment duration will exceed one month is the frequency of unemployment durations exceeding one month. The probability that a basketball player will make a free throw shot is the frequency with which the player makes free throw shots. The probability that a recession will occur is the relative frequency of recessions. In some examples, this definition is conceptually straightforward, as the experiment repeats or has multiple occurances. In other cases, a situation occurs exactly once and will never be repeated. As I write this paragraph, questions of uncertainty of general interest include "Will global warming exceed 2 degrees?" and "When will the COVID-19 epidemic end?" In these cases, it is difficult to interpret a probability as a relative frequency, as the outcome can only occur once. The interpretation can be salvaged by viewing "relative frequency" abstractly by imagining many alternative universes which start from the same initial conditions but evolve randomly. While this solution works (technically), it is not completely satisfactory.

Another view is that probability is subjective. This view holds that probabilities can be interpreted as degrees of belief. If I say "The probability of rain tomorrow is 80%, I mean that this is my personal subjective assessment of the likelihood based on the information available to me. This view may seem too broad, as it allows for arbitrary beliefs, but the subjective interpretation requires subjective probability to follow the axioms and rules of probability. A major disadvantage associated with this approach is that it is not necessarily appropriate for scientific discourse.

What is common between the two definitions is that the probability function follows the same axiomsotherwise, the label "probability" should not be used.

This concept can be illustrated with two real-world examples. The first is from finance. Let U be the event that the S\&P stock index increases in a given week, and let D be the event that the index decreases. This is similar to a coin flip. The sample space is $\{U, D\}$. We compute ${ }^{2}$ that $\mathbb{P}[U]=0.57$ and $\mathbb{P}[D]=0.43$. The probability 57% of an increase is somewhat higher than a fair coin. The probability interpretation is that the index will increase in value in 57% of randomly selected weeks.

The second example concerns wage rates in the United States. Take a randomly selected wage earner. Let H be the event that their wage rate exceeds $\$ 25 /$ hour, and L be the event that their wage rate is less than $\$ 25 /$ hour. Again the structure is similar to a coin flip. We calculate ${ }^{3}$ that $\mathbb{P}[H]=0.31$ and $\mathbb{P}[L]=0.69$. To interpret this as a probability, we can imagine surveying a random individual. Before the survey, we know nothing about the individual. Their wage rate is uncertain and random.

1.4 PROPERTIES OF THE PROBABLITTY FUNCTION

The following properties of probability functions can be derived from the axioms of probability.

Theorem 1.2 For events A and B, the following properties hold:

1. $\mathbb{P}\left[A^{c}\right]=1-\mathbb{P}[A]$.
2. $\mathbb{P}[\varnothing]=0$.
3. $\mathbb{P}[A] \leq 1$.
4. Monotone Probability Inequality: If $A \subset B$, then $\mathbb{P}[A] \leq \mathbb{P}[B]$.
5. Inclusion-Exclusion Principle: $\mathbb{P}[A \cup B]=\mathbb{P}[A]+\mathbb{P}[B]-\mathbb{P}[A \cap B]$.
6. Boole's Inequality: $\mathbb{P}[A \cup B] \leq \mathbb{P}[A]+\mathbb{P}[B]$.
7. Bonferroni's Inequality: $\mathbb{P}[A \cap B] \geq \mathbb{P}[A]+\mathbb{P}[B]-1$.

Proofs are provided in Section 1.15.
Property 1 states that the probability that an event does not occur equals 1 minus the probability that the event occurs.

Property 2 states that "nothing happens" occurs with 0 probability. (Remember this when asked "What happened today in class?")

Property 3 states that probabilities cannot exceed 1.
Property 4 shows that larger sets necessarily have larger probability.
Property 5 is a useful decomposition of the probability of the union of two events.
Properties 6 and 7 are implications of the inclusion-exclusion principle and are frequently used in probability calculations. Boole's inequality shows that the probability of a union is bounded by the sum of the individual probabilities. Bonferroni's inequality shows that the probability of an intersection is bounded below by an expression involving the individual probabilities. A useful feature of these inequalities is that the right-hand sides only depend on the individual probabilities.

[^1]A further comment related to property 2 is that any event which occurs with probability 0 or 1 is called trivial. Such events are essentially nonrandom. In the coin flip example, we could define the sample space as $S=\{H, T$, Edge, Disappear $\}$, where "Edge" means the coin lands on its edge and "Disappear" means the coin disappears into the air. If $\mathbb{P}[$ Edge $]=0$ and $\mathbb{P}[$ Disappear $]=0$, then these events are trivial.

1.5 EDUALLY LKEELY OUTCOMES

When we build probability calculations from foundations, it is often useful to consider settings where symmetry implies that a set of outcomes is equally likely. Standard examples are a coin flip and the toss of a die. We describe a coin as fair if the event of a head is as equally likely as the event of a tail. We describe a die as fair if the event of each face is equally likely. Applying the axioms, we deduce the following.

Theorem 1.3 Principle of Equally Likely Outcomes: If an experiment has N outcomes a_{1}, \ldots, a_{N} which are symmetric in the sense that each outcome is equally likely, then $\mathbb{P}\left[a_{i}\right]=\frac{1}{N}$.

For example, a fair coin satisfies $\mathbb{P}[H]=\mathbb{P}[T]=1 / 2$, and a fair die satisfies $\mathbb{P}[1]=\cdots=\mathbb{P}[6]=1 / 6$.
In some contexts, deciding which outcomes are symmetric and equally likely can be confusing. Take the two-coin example. We could define the sample space as $\{\mathrm{HH}, \mathrm{TT}, \mathrm{HT}\}$, where HT means "one head and one tail". If we guess that all outcomes are equally likely, we would set $\mathbb{P}[H H]=1 / 3$, etc. However, if we define the sample space as $\{\mathrm{HH}, \mathrm{TT}, \mathrm{HT}, \mathrm{TH}\}$ and guess that all outcomes are equally likely, we would find $\mathbb{P}[H H]=1 / 4$. Both answers ($1 / 3$ and $1 / 4$) cannot be correct. The implication is that we should not apply the principle of equally likely outcomes simply because there is a list of outcomes. Instead, there should be a justifiable reason for the outcomes to be equally likely. In this two-coin example, there is no principled reason for symmetry without further analysis, so the property should not be applied. We return to this issue in Section 1.8.

1.6 JONT EVENTS

Take two events H and C. For concreteness, let H be the event that an individual's wage exceeds $\$ 25 /$ hour, and let C be the event that the individual has a college degree. We are interested in the probability of the joint event $H \cap C$. This is the event " H and C ", or in words, that the individual's wage exceeds $\$ 25 /$ hour and they have a college degree. Previously it was noted that $\mathbb{P}[H]=0.31$. We can similarly calculate that $\mathbb{P}[C]=0.36$. What about the joint event $H \cap C$?

From Theorem 1.2, we can deduce that $0 \leq \mathbb{P}[H \cap C] \leq 0.31$. (The upper bound is Bonferroni's inequality.) Thus from the knowledge of $\mathbb{P}[H]$ and $\mathbb{P}[C]$ alone, we can bound the joint probability but not determine its value. It turns out that the actual ${ }^{4}$ probability is $\mathbb{P}[H \cap C]=0.19$.

From the three known probabilities and the properties of Theorem 1.2, we can calculate the probabilities of the various intersections. The results are displayed in the following chart. The four numbers in the central box are the probabilities of the joint events; for example, 0.19 is the probability of both a high wage and a college degree. The largest of the four probabilities is 0.52 : the joint event of a low wage and no college degree. The four probabilities sum to 1 , because the events are a partition of the sample space. The sums of the probabilities in

[^2]each column are reported in the bottom row: the probabilities of a college degree and no degree, respectively. The sums by row are reported in the rightmost column: the probabilities of a high and low wage, respectively.

Joint Probabilities: Wages and Education

| | C | N |
| :---: | :---: | :---: | Any Education

As another illustration, let us examine stock price changes. We reported before that the probability of an increase in the S\&P stock index in a given week is 57%. Now consider the change in the stock index over 2 sequential weeks. What is the joint probability? The results are displayed in the following chart. U_{t} means that the index increases, D_{t} means that the index decreases, U_{t-1} means that the index increases in the previous week, and D_{t-1} means that the index decreases in the previous week.

Joint Probabilities: Stock Returns

	U_{t-1}	D_{t-1}	Any Past Return
U_{t}	0.322	0.245	
D_{t}	0.245	0.188	0.433
Any Return	0.567	0.433	1.000

The four numbers in the central box sum to 1 , since they are a partition of the sample space. We can see that the probability that the stock price increases for 2 weeks in a row is 32% and that it decreases for 2 weeks in a row is 19%. The probability is 25% for an increase followed by a decrease, and also 25% for a decrease followed by an increase.

1.7 CONOITIONAL PROBBBIITY

Take two events A and B. For example, let A be the event "Receive a grade of A on the econometrics exam", and let B be the event "Study econometrics 12 hours a day". We might be interested in the question: Does B affect the likelihood of A ? Alternatively, we may be interested in questions such as: Does attending college affect the likelihood of obtaining a high wage? Or: Do tariffs affect the likelihood of price increases? These are questions of conditional probability.

Abstractly, consider two events A and B. Suppose that we know that B has occurred. Then the only way for A to occur is if the outcome is in the intersection $A \cap B$. So we are asking: "What is the probability that $A \cap B$ occurs, given that B occurs?" The answer is not simply $\mathbb{P}[A \cap B]$. Instead, we can think of the "new" sample space as B. To do so, we normalize all probabilities by $\mathbb{P}[B]$. We arrive at the following definition.

Definition 1.3 If $\mathbb{P}[B]>0$, the conditional probability of A given B is

$$
\mathbb{P}[A \mid B]=\frac{\mathbb{P}[A \cap B]}{\mathbb{P}[B]}
$$

The notation " $A \mid B$ " means " A given B " or " A assuming that B is true". To add clarity, we will sometimes refer to $\mathbb{P}[A]$ as the unconditional probability to distinguish it from $\mathbb{P}[A \mid B]$.

For example, take the roll of a fair die. Let $A=\{1,2,3,4\}$ and $B=\{4,5,6\}$. The intersection is $A \cap B=\{4\}$, which has probability $\mathbb{P}[A \cap B]=1 / 6$. The probability of B is $\mathbb{P}[B]=1 / 2$. Thus $\mathbb{P}[A \mid B]=(1 / 6) /(1 / 2)=1 / 3$. This can also be calculated by observing that conditional on B, the events $\{4\}$, $\{5\}$, and $\{6\}$ each have probability $1 / 3$. Event A only occurs given B if $\{4\}$ occurs. Thus $\mathbb{P}[A \mid B]=\mathbb{P}[4 \mid B]=1 / 3$.

Consider our example of wages and college education. From the probabilities reported in Section 1.6, we can calculate that

$$
\mathbb{P}[H \mid C]=\frac{\mathbb{P}[H \cap C]}{\mathbb{P}[C]}=\frac{0.19}{0.36}=0.53
$$

and

$$
\mathbb{P}[H \mid N]=\frac{\mathbb{P}[H \cap N]}{\mathbb{P}[N]}=\frac{0.12}{0.64}=0.19
$$

There is a considerable difference in the conditional probability of receiving a high wage conditional on a college degree: 53% versus 19%.

As another illustration, let us examine stock price changes. We calculate that

$$
\mathbb{P}\left[U_{t} \mid U_{t-1}\right]=\frac{\mathbb{P}\left[U_{t} \cap U_{t-1}\right]}{\mathbb{P}\left[U_{t-1}\right]}=\frac{0.322}{0.567}=0.568
$$

and

$$
\mathbb{P}\left[U_{t} \mid D_{t-1}\right]=\frac{\mathbb{P}\left[U_{t} \cap D_{t-1}\right]}{\mathbb{P}\left[D_{t-1}\right]}=\frac{0.245}{0.433}=0.566
$$

In this case, the two conditional probabilities are essentially identical. Thus the probability of a price increase in a given week is unaffected by the previous week's result. This is an important special case and is explored further in the next section.

1.8 NDEPPNDENCE

We say that events are independent if their occurrence is unrelated, or equivalently, that the knowledge of one event does not affect the conditional probability of the other event. Take two coin flips. If there is no mechanism connecting the two flips, we would typically expect that neither flip is affected by the outcome of the other. Similarly, if we take two die throws, we typically expect there is no mechanism connecting the throws and thus no reason to expect that one is affected by the outcome of the other. As a third example, consider the crime rate in London and the price of tea in Shanghai. There is no reason to expect one of these two events to affect the other event. ${ }^{5}$ In each of these cases, we describe the events as independent.

This discussion implies that two unrelated (independent) events A and B will satisfy the properties $\mathbb{P}[A \mid B]=\mathbb{P}[A]$ and $\mathbb{P}[B \mid A]=\mathbb{P}[B]$. In words, the probability that a coin is H is unaffected by the outcome (H or T) of another coin. From the definition of conditional probability, this implies $\mathbb{P}[A \cap B]=\mathbb{P}[A] \mathbb{P}[B]$. Let us use this as the formal definition.

Definition 1.4 The events A and B are statistically independent if $\mathbb{P}[A \cap B]=\mathbb{P}[A] \mathbb{P}[B]$.
We typically use the simpler label independent for brevity. As an immediate consequence of the derivation, we obtain the following equivalence.

[^3]Theorem 1.4 If A and B are independent with $\mathbb{P}[A]>0$ and $\mathbb{P}[B]>0$, then

$$
\begin{aligned}
& \mathbb{P}[A \mid B]=\mathbb{P}[A] \\
& \mathbb{P}[B \mid A]=\mathbb{P}[B] .
\end{aligned}
$$

Consider the stock index illustration in Section 1.6. We found that $\mathbb{P}\left[U_{t} \mid U_{t-1}\right]=0.57$ and $\mathbb{P}\left[U_{t} \mid D_{t-1}\right]=0.57$. This means that the probability of an increase is unaffected by the outcome from the previous week, which satisfies the definition of independence. It follows that the events U_{t} and U_{t-1} are independent.

When events are independent, then joint probabilities can be calculated by multiplying individual probabilities. Take two independent coin flips. Write the possible results of the first coin as $\left\{H_{1}, T_{1}\right\}$ and the possible results of the second coin as $\left\{H_{2}, T_{2}\right\}$. Let $p=\mathbb{P}\left[H_{1}\right]$ and $q=\mathbb{P}\left[H_{2}\right]$. We obtain the following chart for the joint probabilities.

Joint Probabilities: Independent Events

H_{1}			
H_{2}	$p q$	T_{1}	
T_{2}	$p(1-q)$	$(1-p)(1-q)$	$1-q$
	p	$1-p$	1

The chart shows that the four joint probabilities are determined by p and q, the probabilities of the individual coins. The entries in each column sum to p and $1-p$, and the entries in each row sum to q and $1-q$.

If two events are not independent, we say that they are dependent. In this case, the joint event $A \cap B$ occurs at a different rate than predicted if the events were independent.

For example, consider wage rates and college degrees. We have already shown that the conditional probability of a high wage is affected by a college degree, which demonstrates that the two events are dependent. What we now do is see what happens when we calculate the joint probabilities from the individual probabilities under the (false) assumption of independence. The results are shown in the following chart.

Joint Probabilities: Wages and Education

	C	N	Any Education
H	0.11	0.20	
L	0.25	0.44	0.69
Any Wage	0.36	0.64	1.00

The entries in the central box are obtained by multiplication of the individual probabilities (e.g., $\mathbb{P}[H \cap C]=0.31 \times 0.36=0.11)$. What we see is that the diagonal entries are much smaller, and the offdiagonal entries are much larger, than the corresponding correct joint probabilities. In this example, the joint events $H \cap C$ and $L \cap N$ occur more frequently than that predicted if wages and education were independent.

We can use independence to make probability calculations. Take the two-coin example. If two sequential fair coin flips are independent, then the probability that both are heads is

$$
\mathbb{P}\left[H_{1} \cap H_{2}\right]=\mathbb{P}\left[H_{1}\right] \times \mathbb{P}\left[H_{2}\right]=\frac{1}{2} \times \frac{1}{2}=\frac{1}{4} .
$$

This addresses the issue raised in Section 1.5 . The probability of HH is $1 / 4$, not $1 / 3$. The key is the assumption of independence, not how the outcomes are listed.

As another example, consider throwing a pair of fair dice. If the two dice are independent, then the probability of two 1 's is $\mathbb{P}[1] \times \mathbb{P}[1]=1 / 36$.

Naïvely, one might think that independence relates to disjoint events, but the converse is true. If A and B are disjoint, then they cannot be independent. That is, disjointness means $A \cap B=\varnothing$, and by property 2 of Theorem 1.2,

$$
\mathbb{P}[A \cap B]=\mathbb{P}[\varnothing]=0 \neq \mathbb{P}[A] \mathbb{P}[B]
$$

and the right side is nonzero by the definition of independence.
Independence lies at the core of many probability calculations. If you can break an event into the joint occurance of several independent events, then the probability of the event is the product of the individual probabilities.

Take, for example, the two-coin example and the event $\{H H, H T\}$. This equals $\{$ First coin is H, Second coin is either H or $T\}$. If the two coins are independent, this has probability

$$
\mathbb{P}[H] \times \mathbb{P}[H \text { or } T]=\frac{1}{2} \times 1=\frac{1}{2}
$$

As a bit more complicated example, what is the probability of "rolling a seven" from a pair of dice, meaning that the two faces add to seven? We can calculate this as follows. Let (x, y) denote the outcomes from the two (ordered) dice. The following outcomes yield a seven: $\{(1,6),(2,5),(3,4),(4,3),(5,2),(6,1)\}$. The outcomes are disjoint. Thus by the third axiom, the probability of a seven is the sum

$$
\mathbb{P}[7]=\mathbb{P}[1,6]+\mathbb{P}[2,5]+\mathbb{P}[3,4]+\mathbb{P}[4,3]+\mathbb{P}[5,2]+\mathbb{P}[6,1]
$$

Assume that the two dice are independent of one another, so the probabilities are products. For fair dice, the above expression equals

$$
\begin{aligned}
\mathbb{P} & {[1] \times \mathbb{P}[6]+\mathbb{P}[2] \times \mathbb{P}[5]+\mathbb{P}[3] \times \mathbb{P}[4]+\mathbb{P}[4] \times \mathbb{P}[3]+\mathbb{P}[5] \times \mathbb{P}[2]+\mathbb{P}[6] \times \mathbb{P}[1] } \\
& =\frac{1}{6} \times \frac{1}{6}+\frac{1}{6} \times \frac{1}{6}+\frac{1}{6} \times \frac{1}{6}+\frac{1}{6} \times \frac{1}{6}+\frac{1}{6} \times \frac{1}{6}+\frac{1}{6} \times \frac{1}{6} \\
& =6 \times \frac{1}{6^{2}} \\
& =\frac{1}{6}
\end{aligned}
$$

Now suppose that the dice are not fair. Suppose they are independent, but each is weighted so that the probability of a " 1 " is $2 / 6$ and the probability of a " 6 " is 0 . We revise the calculation to find

$$
\begin{aligned}
\mathbb{P} & {[1] \times \mathbb{P}[6]+\mathbb{P}[2] \times \mathbb{P}[5]+\mathbb{P}[3] \times \mathbb{P}[4]+\mathbb{P}[4] \times \mathbb{P}[3]+\mathbb{P}[5] \times \mathbb{P}[2]+\mathbb{P}[6] \times \mathbb{P}[1] } \\
& =\frac{2}{6} \times \frac{0}{6}+\frac{1}{6} \times \frac{1}{6}+\frac{1}{6} \times \frac{1}{6}+\frac{1}{6} \times \frac{1}{6}+\frac{1}{6} \times \frac{1}{6}+\frac{0}{6} \times \frac{2}{6} \\
& =\frac{1}{9}
\end{aligned}
$$

1.9 LAW OF TOTAL PROBABLIITY

An important relationship can be derived from the partitioning theorem (Theorem 1.1) which states that if $\left\{B_{i}\right\}$ is a partition of the sample space S, then

$$
A=\bigcup_{i=1}^{\infty}\left(A \cap B_{i}\right)
$$

Since the events $\left(A \cap B_{i}\right)$ are disjoint, an application of the third axiom and the definition of conditional probability implies

$$
\mathbb{P}[A]=\sum_{i=1}^{\infty} \mathbb{P}\left[A \cap B_{i}\right]=\sum_{i=1}^{\infty} \mathbb{P}\left[A \mid B_{i}\right] \mathbb{P}\left[B_{i}\right]
$$

This is called the Law of Total Probability.

Theorem 1.5 Law of Total Probability. If $\left\{B_{1}, B_{2}, \ldots\right\}$ is a partition of S, and $\mathbb{P}\left[B_{i}\right]>0$ for all i, then

$$
\mathbb{P}[A]=\sum_{i=1}^{\infty} \mathbb{P}\left[A \mid B_{i}\right] \mathbb{P}\left[B_{i}\right]
$$

For example, take the roll of a fair die and the events $A=\{1,3,5\}$ and $B_{j}=\{j\}$. We calculate that

$$
\sum_{i=1}^{6} \mathbb{P}\left[A \mid B_{i}\right] \mathbb{P}\left[B_{i}\right]=1 \times \frac{1}{6}+0 \times \frac{1}{6}+1 \times \frac{1}{6}+0 \times \frac{1}{6}+1 \times \frac{1}{6}+0 \times \frac{1}{6}=\frac{1}{2}
$$

which equals $\mathbb{P}[A]=1 / 2$, as claimed.

I.10 BAPES RULE

A famous result is credited to Reverend Thomas Bayes.
Theorem 1.6 Bayes Rule. If $\mathbb{P}[A]>0$ and $\mathbb{P}[B]>0$, then

$$
\mathbb{P}[A \mid B]=\frac{\mathbb{P}[B \mid A] \mathbb{P}[A]}{\mathbb{P}[B \mid A] \mathbb{P}[A]+\mathbb{P}\left[B \mid A^{c}\right] \mathbb{P}\left[A^{c}\right]}
$$

Proof. The definition of conditional probability (applied twice) implies

$$
\mathbb{P}[A \cap B]=\mathbb{P}[A \mid B] \mathbb{P}[B]=\mathbb{P}[B \mid A] \mathbb{P}[A]
$$

Solving, we find

$$
\mathbb{P}[A \mid B]=\frac{\mathbb{P}[B \mid A] \mathbb{P}[A]}{\mathbb{P}[B]}
$$

Applying the law of total probability to $\mathbb{P}[B]$ using the partition $\left\{A, A_{c}\right\}$, we obtain the stated result.

Bayes Rule is terrifically useful in many contexts.
As one example, suppose you walk by a sports bar where you see a group of people watching a sports match which involves a popular local team. Suppose you suddenly hear a roar of excitement from the bar. Did
the local team just score? To investigate this by Bayes Rule, let $A=\{$ score $\}$ and $B=\{$ crowd roars $\}$. Assume that $\mathbb{P}[A]=1 / 10, \mathbb{P}[B \mid A]=1$, and $\mathbb{P}\left[B \mid A^{c}\right]=1 / 10$ (there are other events which can cause a roar). Then

$$
\mathbb{P}[A \mid B]=\frac{1 \times \frac{1}{10}}{1 \times \frac{1}{10}+\frac{1}{10} \times \frac{9}{10}}=\frac{10}{19} \simeq 53 \%
$$

This is slightly over one-half. Under these assumptions, the roar of the crowd is informative though not definitive. ${ }^{6}$

As another example, suppose there are two types of workers: hard workers (H) and lazy workers (L). Suppose that we know from previous experience that $\mathbb{P}[H]=1 / 4$ and $\mathbb{P}[L]=3 / 4$. Suppose we can administer a screening test to determine whether an applicant is a hard worker. Let T be the event that an applicant has a high score on the test. Suppose that $\mathbb{P}[T \mid H]=3 / 4$ and $\mathbb{P}[T \mid L]=1 / 4$. That is, the test has some signal but is not perfect. We are interested in calculating $\mathbb{P}[H \mid T]$, the conditional probability that an applicant is a hard worker, given that they have a high test score. Bayes Rule tells us

$$
\mathbb{P}[H \mid T]=\frac{\mathbb{P}[T \mid H] \mathbb{P}[H]}{\mathbb{P}[T \mid H] \mathbb{P}[H]+\mathbb{P}[T \mid L] \mathbb{P}[L]}=\frac{\frac{3}{4} \times \frac{1}{4}}{\frac{3}{4} \times \frac{1}{4}+\frac{1}{4} \times \frac{3}{4}}=\frac{1}{2}
$$

The probability the applicant is a hard worker is only 50% ! Does this mean the test is useless? Consider the question: What is the probability an applicant is a hard worker, given that they had a poor (P) test score? We find

$$
\mathbb{P}[H \mid P]=\frac{\mathbb{P}[P \mid H] \mathbb{P}[H]}{\mathbb{P}[P \mid H] \mathbb{P}[H]+\mathbb{P}[P \mid L] \mathbb{P}[L]}=\frac{\frac{1}{4} \times \frac{1}{4}}{\frac{1}{4} \times \frac{1}{4}+\frac{3}{4} \times \frac{3}{4}}=\frac{1}{10}
$$

This is only 10%. Thus what the test tells us is that if an applicant scores high, we are uncertain about that applicant's work habits; but if an applicant scores low, it is unlikely that they are a hard worker.

To revisit our real-world example of education and wages, recall that we calculated that the probability of a high wage (H) given a college degree (C) is $\mathbb{P}[H \mid C]=0.53$. Applying Bayes Rule, we can find the probability that an individual has a college degree given that they have a high wage is

$$
\mathbb{P}[C \mid H]=\frac{\mathbb{P}[H \mid C] \mathbb{P}[C]}{\mathbb{P}[H]}=\frac{0.53 \times 0.36}{0.31}=0.62
$$

The probability of a college degree given that they have a low wage (L) is

$$
\mathbb{P}[C \mid L]=\frac{\mathbb{P}[L \mid C] \mathbb{P}[C]}{\mathbb{P}[L]}=\frac{0.47 \times 0.36}{0.69}=0.25
$$

Thus given this one piece of information (if the wage is above or below $\$ 25$), we have probabilistic information about whether the individual has a college degree.

1.II PERNUTATIONS AND COMBNATIINS

For some calculations, it is useful to count the number of individual outcomes. For some of these calculations, the concepts of counting rules, permutations, and combinations are useful.

The first definition we explore is the counting rule, which shows how to count options when we combine tasks. For example, suppose you own ten shirts, three pairs of jeans, five pairs of socks, four coats and two

[^4]hats. How many clothing outfits can you create, assuming you use one of each category? The answer is $10 \times$ $3 \times 5 \times 4 \times 2=1200$ distinct outfits. ${ }^{7}$

Theorem 1.7 Counting Rule. If a job consists of K separate tasks, the $k^{\text {th }}$ of which can be done in n_{k} ways, then the entire job can be done in $n_{1} n_{2} \cdots n_{K}$ ways.

The counting rule is intuitively simple but is useful in a variety of modeling situations.
The second definition we explore is that of a permutation. A permutation is a rearrangement of the order. Suppose you take a classroom of 30 students. How many ways can you arrange their order? Each arrangement is called a "permutation." To calculate the number of permutations, observe that there are 30 students who can be placed first. Given this choice, there are 29 students who can be placed second. Given these two choices, there are 28 students for the third position, and so on. The total number of permutations is

$$
30 \times 29 \times \cdots \times 1=30!
$$

Here, the symbol! denotes the factorial. (See Section A.3.)
The general solution is as follows.

Theorem 1.8 The number of permutations of a group of N objects is N !
Suppose we are trying to select an ordered five-student team from a 30 -student class for a competition. How many ordered groups of five are there? The calculation is much the same as above, but we stop once the fifth position is filled. Thus the number is

$$
30 \times 29 \times 28 \times 27 \times 26=\frac{30!}{25!}
$$

The general solution is as follows.

Theorem 1.9 The number of permutations of a group of N objects taken K at a time is

$$
P(N, K)=\frac{N!}{(N-K)!}
$$

The third definition we explore is that of a combination. A combination is an unordered group of objects. For example, revisit the idea of selecting a five-student team for a competition, but now assume that the team is unordered. Then the question is: How many five-member teams can we construct from a class of 30 students? In general, how many groups of K objects can be extracted from a group of N objects? We call this the "number of combinations".

The extreme cases are easy. If $K=1$, then there are N combinations (each individual student). If $K=N$, then there is one combination (the entire class). The general answer can be found by noting that the number of ordered groups is the number of permutations $P(N, K)$. Each group of K can be ordered K ! ways (since this is the number of permutations of a group of K). Thus the number of unordered groups is $P(N, K) / K!$. We have found the following theorem.

Theorem 1.10 The number of combinations of a group of N objects taken K at a time is

$$
\binom{N}{K}=\frac{N!}{K!(N-K)!}
$$

[^5]The symbol $\binom{N}{K}$, in words " N choose K ", is a commonly used notation for combinations. They are also known as the binomial coefficients. The latter name is used because they are the coefficients from the binomial expansion.

Theorem 1.11 Binomial Theorem. For any integer $N \geq 0$,

$$
(a+b)^{N}=\sum_{K=0}^{N}\binom{N}{K} a^{K} b^{N-K} .
$$

The proof of the binomial theorem is given in Section 1.15.
The permutation and combination rules introduced in this section are useful in certain counting applications but may not be necessary for a general understanding of probability. My view is that the tools should be understood but not memorized. Instead, these tools can be looked up when needed.

1.12 SAMPLING WITH AND WITHOUT REPLICEMENT

Consider the problem of sampling from a finite set. For example, consider a $\$ 2$ Powerball lottery ticket which consists of five integers each between 1 and 69. If all five numbers match the winning numbers, the player wins ${ }^{8} \$ 1$ million!

To calculate the probability of winning the lottery, we need to count the number of potential tickets. The answer depends on two factors: (1) Can the numbers repeat? (2) Does the order matter? The number of tickets could have four distinct values, depending on the two choices just described.

The first question, of whether a number can repeat or not, is called "sampling with replacement" versus "sampling without replacement". In the actual Powerball game, 69 ping-pong balls are numbered and put in a rotating air machine with a small exit. As the balls bounce around, some of them find the exit. The first five to exit are the winning numbers. In this setting, we have "sampling without replacement", as once a ball exits, it is no longer among the remaining balls. A consequence for the lottery is that a winning ticket cannot have duplicate numbers. However, an alternative way to play the game would be to extract the first ball, replace it in the chamber, and repeat. This would be "sampling with replacement". In this game, a winning ticket could have repeated numbers.

The second question, of whether the order matters, is the same as the distinction between permutations and combinations as discussed in the previous section. In the case of the Powerball game, the balls emerge in a specific order. However, this order is ignored for the purpose of determining a winning ticket. This is the case of unordered sets. If the rules of the game were different, the order could matter. If so, we would use the tools of ordered sets.

We now describe the four sampling problems. We want to find the number of groups of size K which can be taken from N items, for example, the number of five integers taken from the set $\{1, \ldots, 69\}$.

Ordered, with replacement. Consider selecting the items in sequence. The first item can be any of the N, the second can be any of the N, the third can be any of the N, etc. So by the counting rule, the total number of possible groups is

$$
N \times N \times \cdots \times N=N^{K} .
$$

[^6]In the Powerball example, this is

$$
69^{5}=1,564,031,359
$$

This is a very large number of potential tickets!

Ordered, without replacement. This is the number of permutations $P(N, K)=N!/(N-K)$! In the powerball example, this number is

$$
\frac{69!}{(69-5)!}=\frac{69!}{64!}=69 \times 68 \times 67 \times 66 \times 65=1,348,621,560
$$

This is nearly as large as the case with replacement.

Unordered, without replacement. This is the number of combinations $N!/(K!(N-K)!)$. In the powerball example, this number is

$$
\frac{69!}{5!(69-5)!}=11,238,513
$$

This is a large number but considerably smaller than the cases of ordered sampling.

Unordered, with replacement. This computation is tricky. It is not N^{K} (ordered with replacement) divided by K !, because the number of orderings per group depends on whether there are repeats. The trick is to recast the question as a different problem. It turns out that the number we are looking for is the same as the number of N-tuples of nonnegative integers $\left\{x_{1}, \ldots, x_{N}\right\}$ whose sum is K. To see this, a lottery ticket (unordered with replacement) can be represented by the number of " 1 's" x_{1}, the number of " 2 's" x_{2}, the number of " 3 's" x_{3}, and so forth, and we know that the sum of these numbers $\left(x_{1}+\cdots+x_{N}\right)$ must equal K. The solution has a clever name based on the original proof notation.

Theorem 1.12 Stars and Bars Theorem. The number of N-tuples of nonnegative integers whose sum is K is equal to $\binom{N+K-1}{K}$.

The proof of the stars and bars theorem is omitted, as it is rather tedious. It does give us the answer to the question we started to address, namely, the number of unordered sets taken with replacement. In the Powerball example, this is

$$
\binom{69+5-1}{5}=\frac{73!}{5!68!}=15,020,334
$$

Table 1.1 summarizes the four sampling results.

Table 1.1
Number of possible arrangments of size K from N items

	Without Replacement	With Replacement
Ordered	$\frac{N!}{(N-K)!}$	N^{K}
Unordered	$\binom{N}{K}$	$\binom{N+K-1}{K}$

The actual Powerball game uses sampling that is unordered without replacement. Thus there are about 11 million potential tickets. As each ticket has an equal chance of occurring (if the random process is fair), this means the probability of winning is about $1 / 11,000,000$. Since a player wins $\$ 1$ million once for every 11 million tickets sold, the expected payout (ignoring the other payouts) is about $\$ 0.09$. This is a low payout (considerably below a "fair" bet, given that a ticket costs \$2) but is sufficiently high to attract meaningful interest from players.

1.13 POKER HANDS

A fun application of probability theory is to the game of poker. Similar types of calculations can be useful in economic examples involving multiple choices.

A standard game of poker is played with a 52 -card deck containing 13 denominations $\{2,3,4,5,6,7,8$, 9, 10, Jack, Queen, King, Ace\} in each of four suits \{club, diamond, heart, spade\}. The deck is shuffled (so the order is random) and a player is dealt ${ }^{9}$ five cards called a "hand". Hands are ranked based on whether there are multiple cards (pair, two pair, three-of-a-kind, full house, or four-of-a-kind), all five cards in sequence (called a "straight"), or all five cards of the same suit (called a "flush"). Players win if they have the best hand.

We are interested in calculating the probability of receiving a winning hand.
The structure is unordered sampling without replacement. The number of possible poker hands is

$$
\binom{52}{5}=\frac{52!}{47!5!}=\frac{48 \times 49 \times 50 \times 51 \times 52}{2 \times 3 \times 4 \times 5}=48 \times 49 \times 5 \times 17 \times 13=2,598,560
$$

Since the draws are symmetric and random, all hands have the same probability of receipt, implying that the probability of receiving any specific hand is $1 / 2,598,560$, an infinitesimally small number.

Another way of calculating this probability is as follows. Imagine picking a specific five-card hand. The probability of receiving one of the five cards on the first draw is $5 / 52$, the probability of receiving one of the remaining four on the second draw is $4 / 51$, the probability of receiving one of the remaining three on the third draw is $3 / 50$, etc., so the probability of receiving the five-card hand is

$$
\frac{5 \times 4 \times 3 \times 2 \times 1}{52 \times 51 \times 50 \times 49 \times 48}=\frac{1}{13 \times 17 \times 5 \times 49 \times 48}=\frac{1}{2,598,960}
$$

One way to calculate the probability of a winning hand is to enumerate and count the number of winning hands in each category and then divide by the total number of hands, $2,598,560$. Let us consider a few examples.

Four of a kind. Consider the number of hands with four of a specific denomination (such as Kings). The hand contains all four Kings plus an additional card, which can be any of the remaining 48. Thus there are exactly 48 five-card hands with all four Kings. There are 13 denominations, so there are $13 \times 48=624$ hands with four-of-a-kind. Thus the probability of drawing a four-of-a-kind is

$$
\frac{13 \times 48}{13 \times 17 \times 5 \times 49 \times 48}=\frac{1}{17 \times 5 \times 49}=\frac{1}{4165} \simeq 0.0 \%
$$

[^7]Three of a kind. Consider the number of hands with three of a specific denomination (such as Aces). There are $\binom{4}{3}=4$ groups of three Aces. There are 48 cards from which to choose the remaining two. The number of such arrangements is $\binom{48}{2}=\frac{48!}{46!2!}=47 \times 24$. However, this includes pairs. There are twelve denominations each of which has $\binom{4}{2}=6$ pairs, so there are $12 \times 6=72$ pairs. Thus the number of two-card arrangements excluding pairs is $47 \times 24-72=44 \times 24$. Hence the number of hands with three Aces and no pair is $4 \times 44 \times$ 24. As there are 13 possible denominations, the number of hands with a three of a kind is $13 \times 4 \times 44 \times 24$. Thus the probability of drawing a three-of-a-kind is

$$
\frac{13 \times 4 \times 44 \times 24}{13 \times 17 \times 5 \times 49 \times 48}=\frac{88}{17 \times 5 \times 49} \simeq 2.1 \%
$$

One pair. Consider the number of hands with two of a specific denomination (such as a " 7 "). There are $\binom{4}{2}=$ 6 pairs of 7's. From the 48 remaining cards, the number of three-card arrangements is $\binom{48}{3}=\frac{48!}{45!3!}=23 \times$ 47×16. However, this includes three-card groups and two-card pairs. There are twelve denominations. Each has $\binom{4}{3}=4$ three-card groups. Each also has $\binom{4}{2}=6$ pairs and 44 remaining cards from which to select the third card. Thus there are $12 \times(4+6 \times 44)$ three-card arrangements with either a three-card group or a pair. Subtracting, we find that the number of hands with two 7's and no other pairs is

$$
6 \times(23 \times 47 \times 16-12 \times(4+6 \times 44))
$$

Multiplying by 13 , the probability of drawing one pair of any denomination is

$$
13 \times \frac{6 \times(23 \times 47 \times 16-12 \times(4+6 \times 44))}{13 \times 17 \times 5 \times 49 \times 48}=\frac{23 \times 47 \times 2-3 \times(2+3 \times 44)}{17 \times 5 \times 49} \simeq 42 \%
$$

From these simple calculations, you can see that if you receive a random hand of five cards, you have a good chance of receiving one pair, a small chance of receiving a three-of-a-kind, and a negligible chance of receiving a four-of-a-kind.

1.14 SIGMA FEEILS*

Definition 1.2 is incomplete as stated. When there are an uncountable infinity of events, it is necessary to restrict the set of allowable events to exclude pathological cases. This is a technicality which has little impact on practical econometrics. However, the terminology is used frequently, so it is prudent to be aware of the following definitions. The correct definition of probability is as follows.

Definition 1.5 A probability function \mathbb{P} is a function from a sigma field \mathscr{B} to the real line which satisfies the axioms of probability.

The difference is that Definition 1.5 restricts the domain to a sigma field \mathscr{B}. The latter is a collection of sets which is closed under set operations. The restriction means that there are some events for which probability is not defined.

A sigma field is defined as follows.

Definition 1.6 A collection \mathscr{B} of sets is called a sigma field if it satisfies the following three properties:

1. $\varnothing \in \mathscr{B}$.
2. If $A \in \mathscr{B}$, then $A^{c} \in \mathscr{B}$.
3. If $A_{1}, A_{2}, \ldots \in \mathscr{B}$, then $\bigcup_{i=1}^{\infty} A_{i} \in \mathscr{B}$.

The infinite union in part 3 includes all elements which are an element of A_{i} for some i. An example is $\bigcup_{i=1}^{\infty}[0,1-1 / i]=[0,1)$.

An alternative label for a sigma field is "sigma algebra". The following is a leading example of a sigma field.

Definition 1.7 The Borel sigma field is the smallest sigma field on \mathbb{R} containing all open intervals (a, b). It contains all open intervals and closed intervals, and their countable unions, intersections, and complements.

A sigma field can be generated from a finite collection of events by taking all unions, intersections, and complements. Take the coin-flip example and start with the event $\{H\}$. Its complement is $\{T\}$, their union is $S=\{H, T\}$, and the union's complement is $\{\varnothing\}$. No further events can be generated. Thus the collection $\{\{\varnothing\},\{H\},\{T\}, S\}$ is a sigma field.

For an example on the positive real line, take the sets $[0,1]$ and $(1,2]$. Their intersection is $\{\varnothing\}$, their union is $[0,2]$, and their complements are $(1, \infty),[0,1] \cup(2, \infty)$, and $(2, \infty)$. A further union is $[0, \infty)$. This collection is a sigma field, as no further events can be generated.

When there are an infinite number of events, then it may not be possible to generate a sigma field through set operations, as pathological counterexamples exist. These counterexamples are difficult to characterize, are nonintuitive, and seem to have no practical implications for econometric practice. Therefore the issue is generally ignored in econometrics.

If the concept of a sigma field seems technical, it is! The concept is not used further in this textbook.

1.15 TECHNCAL PROOFF**

Proof of Theorem 1.1 Take an outcome ω in A. Since $\left\{B_{1}, B_{2}, \cdots\right\}$ is a partition of S, it follows that $\omega \in B_{i}$ for some i. Set $A_{i}=\left(A \cap B_{i}\right)$. Thus $\omega \in A_{i} \subset \bigcup_{i=1}^{\infty} A_{i}$. This shows that every element in A is an element of $\bigcup_{i=1}^{\infty} A_{i}$.

Now take an outcome ω in $\bigcup_{i=1}^{\infty} A_{i}$. Thus $\omega \in A_{i}$ for some i. This implies $\omega \in A$. This shows that every element in $\bigcup_{i=1}^{\infty} A_{i}$ is an element of A.

For $i \neq j, A_{i} \cap A_{j}=\left(A \cap B_{i}\right) \cap\left(A \cap B_{j}\right)=A \cap\left(B_{i} \cap B_{j}\right)=\varnothing$ since B_{i} are mutually disjoint. Thus A_{i} are mutually disjoint.

Proof of Theorem 1.2 property $1 A$ and A^{c} are disjoint and $A \cup A^{c}=S$. The second and third axioms imply

$$
\begin{equation*}
1=\mathbb{P}[S]=\mathbb{P}[A]+\mathbb{P}\left[A^{c}\right] \tag{1.1}
\end{equation*}
$$

Rearranging, we find $\mathbb{P}\left[A^{c}\right]=1-\mathbb{P}[A]$ as claimed.
Proof of Theorem 1.2 property 2 We have that $\varnothing=S^{c}$. By Theorem 1.2 and the second axiom of probability, $\mathbb{P}[\varnothing]=1-\mathbb{P}[S]=0$, as claimed.

Proof of Theorem 1.2 property 3 The first axiom implies $\mathbb{P}\left[A^{c}\right] \geq 0$. This and equation (1.1) imply
as claimed.

$$
\mathbb{P}[A]=1-\mathbb{P}\left[A^{c}\right] \leq 1
$$

Proof of Theorem 1.2 property 4 The assumption $A \subset B$ implies $A \cap B=A$. By the partitioning theorem (Theorem 1.1) $B=(B \cap A) \cup\left(B \cap A^{c}\right)=A \cup\left(B \cap A^{c}\right)$ where A and $B \cap A^{c}$ are disjoint. The third axiom implies

$$
\mathbb{P}[B]=\mathbb{P}[A]+\mathbb{P}\left[B \cap A^{c}\right] \geq \mathbb{P}[A]
$$

where the inequality is $\mathbb{P}\left[B \cap A^{c}\right] \geq 0$ which holds by the first axiom. Thus, $\mathbb{P}[B] \geq \mathbb{P}[A]$, as claimed.

Proof of Theorem 1.2 property $5\{A \cup B\}=A \cup\left\{B \cap A^{c}\right\}$ where A and $\left\{B \cap A^{c}\right\}$ are disjoint. Also $B=\{B \cap A\} \cup\left\{B \cap A^{c}\right\}$ where $\{B \cap A\}$ and $\left\{B \cap A^{c}\right\}$ are disjoint. These two relationships and the third axiom imply

$$
\begin{aligned}
\mathbb{P}[A \cup B] & =\mathbb{P}[A]+\mathbb{P}\left[B \cap A^{c}\right] \\
\mathbb{P}[B] & =\mathbb{P}[B \cap A]+\mathbb{P}\left[B \cap A^{c}\right] .
\end{aligned}
$$

Subtracting,

$$
\mathbb{P}[A \cup B]-\mathbb{P}[B]=\mathbb{P}[A]-\mathbb{P}[B \cap A]
$$

Rearranging, we obtain the result.

Proof of Theorem 1.2 property 6 From the Inclusion-Exclusion Principle and $\mathbb{P}[A \cap B] \geq 0$ (the first axiom)

$$
\mathbb{P}[A \cup B]=\mathbb{P}[A]+\mathbb{P}[B]-\mathbb{P}[A \cap B] \leq \mathbb{P}[A]+\mathbb{P}[B]
$$

as claimed.

Proof of Theorem 1.2 property 7 Rearranging the Inclusion-Exclusion Principle and using $\mathbb{P}[A \cup B] \leq 1$ (Theorem 1.2 property 3), we have

$$
\mathbb{P}[A \cap B]=\mathbb{P}[A]+\mathbb{P}[B]-\mathbb{P}[A \cup B] \geq \mathbb{P}[A]+\mathbb{P}[B]-1
$$

which is the stated result.

Proof of Theorem 1.11 (Binomial Theorem) Multiplying out, the expression

$$
\begin{equation*}
(a+b)^{N}=(a+b) \times \cdots \times(a+b) \tag{1.2}
\end{equation*}
$$

is a polynomial in a and b with 2^{N} terms. Each term takes the form of the product of K of the a and $N-K$ of the b, thus is of the form $a^{K} b^{N-K}$. The number of terms of this form is equal to the number of combinations of the a 's, which is $\binom{N}{K}$. Consequently, expression (1.2) equals $\sum_{K=0}^{N}\binom{N}{K} a^{K} b^{N-K}$, as stated.

1.16 EXERCISES

Exercise 1.1 Let $A=\{a, b, c, d\}$ and $B=\{a, c, e, f\}$.
(a) Find $A \cap B$.
(b) Find $A \cup B$.

Exercise 1.2 Describe the sample space S for the following experiments.
(a) Flip a coin.
(b) Roll a six-sided die.
(c) Roll two six-sided dice.
(d) Shoot six free throws (in basketball).

Exercise 1.3 From a 52 -card deck of playing cards, draw five cards to make a hand.
(a) Let A be the event "The hand has two Kings". Describe A^{c}.
(b) A straight is five cards in sequence, for example, $\{5,6,7,8,9\}$. A flush is five cards of the same suit. Let A be the event "The hand is a straight" and B be the event "The hand is 3 -of-a-kind". Are A and B disjoint or not disjoint?
(c) Let A be the event "The hand is a straight" and B be the event "The hand is flush". Are A and B disjoint or not disjoint?

Exercise 1.4 For events A and B, express the probability of "either A or B but not both" as a formula in terms of $\mathbb{P}[A], \mathbb{P}[B]$, and $\mathbb{P}[A \cap B]$.

Exercise 1.5 If $\mathbb{P}[A]=1 / 2$ and $\mathbb{P}[B]=2 / 3$, can A and B be disjoint? Explain.

Exercise 1.6 Prove that $\mathbb{P}[A \cup B]=\mathbb{P}[A]+\mathbb{P}[B]-\mathbb{P}[A \cap B]$.

Exercise 1.7 Show that $\mathbb{P}[A \cap B] \leq \mathbb{P}[A] \leq \mathbb{P}[A \cup B] \leq \mathbb{P}[A]+\mathbb{P}[B]$.

Exercise 1.8 Suppose $A \cap B=A$. Can A and B be independent? If so, give the appropriate condition.

Exercise 1.9 Prove that

$$
\mathbb{P}[A \cap B \cap C]=\mathbb{P}[A \mid B \cap C] \mathbb{P}[B \mid C] \mathbb{P}[C] .
$$

Assume $\mathbb{P}[C]>0$ and $\mathbb{P}[B \cap C]>0$.

Exercise 1.10 Is $\mathbb{P}[A \mid B] \leq \mathbb{P}[A], \mathbb{P}[A \mid B] \geq \mathbb{P}[A]$, or is neither necessarily true?
Exercise 1.11 Give an example where $\mathbb{P}[A]>0$, yet $\mathbb{P}[A \mid B]=0$.

Exercise 1.12 Calculate the following probabilities concerning a standard 52-card playing deck.
(a) Drawing a King with one card.
(b) Drawing a King on the second card, conditional on a King on the first card.
(c) Drawing two Kings with two cards.
(d) Drawing a King on the second card, conditional on the first card is not a King.
(e) Drawing a King on the second card, when the first card is placed face down (so is unknown).

Exercise 1.13 You are on a game show, and the host shows you five doors marked A, B, C, D, and E. The host says that a prize is behind one of the doors, and you win the prize if you select the correct door. Given the stated information, what probability distribution would you use for modeling the distribution of the correct door?

Exercise 1.14 Calculate the following probabilities, assuming fair coins and dice.
(a) Getting three heads in a row from three coin flips.
(b) Getting a heads given that the previous coin was a tails.
(c) From two coin flips getting two heads given that at least one coin is a heads.
(d) Rolling a six from a pair of dice.
(e) Rolling "snakes eyes" from a pair of dice. (Getting a pair of ones.)

Exercise 1.15 If four random cards are dealt from a deck of playing cards, what is the probability that all four are Aces?

Exercise 1.16 Suppose that the unconditional probability of a disease is 0.0025 . A screening test for this disease has a detection rate of 0.9 , and has a false positive rate of 0.01 . Given that the screening test returns positive, what is the conditional probability of having the disease?

Exercise 1.17 Suppose that 1% of athletes use banned steroids. Suppose that a drug test has a detection rate of 40% and a false positive rate of 1%. If an athlete tests positive, what is the conditional probability that the athlete has taken banned steroids?

Exercise 1.18 Sometimes we use the concept of conditional independence. The definition is as follows. Let A, B, C be three events with positive probabilities. Then A and B are conditionally independent given C if $\mathbb{P}[A \cap B \mid C]=\mathbb{P}[A \mid C] \mathbb{P}[B \mid C]$. Consider the experiment of tossing two dice. Let $A=\{$ First die is 6$\}, B=$ $\{$ Second die is 6$\}$, and $C=\{$ Both dice are the same $\}$. Show that A and B are independent (unconditionally), but A and B are dependent given C.

Exercise 1.19 Monte Hall. This is a famous (and surprisingly difficult) problem based on an old U.S. television game show "Let's Make a Deal" hosted by Monte Hall. A standard part of the show ran as follows: A contestant was asked to select from one of three identical doors: A, B, and C. Behind one of the three doors was a prize. If the contestant selected the correct door, they would receive the prize. The contestant picked one door (say, A) but it is not immediately opened. To increase the drama, the host opened one of the two remaining doors (say, door B) revealing that that door does not have the prize. The host then made the offer: "You have the option to switch your choice" (e.g., to switch to door C). You can imagine that the contestant may have made one of reasonings (a)-(c) below. Comment on each of these three reasonings. Are they correct?
(a) "When I selected door A, the probability that it has the prize was $1 / 3$. No information was revealed. So the probability that Door A has the prize remains $1 / 3$."
(b) "The original probability was $1 / 3$ on each door. Now that door B is eliminated, doors A and C each have each probability of $1 / 2$. It does not matter whether I stay with A or switch to C."
(c) "The host inadvertently revealed information. If door C had the prize, he was forced to open door B. If door B had the prize, he would have been forced to open door C. Thus it is quite likely that door C has the prize."
(d) Assume a prior probability for each door of 1/3. Calculate the posterior probabilities that door A and door C have the prize, respectively. What choice do you recommend for the contestant?

Exercise 1.20 In the game of blackjack, you are dealt two cards from a standard playing deck. Your score is the sum of the value of the two cards, where numbered cards have the value given by their number, face cards (Jack, Queen, King) each receive 10 points, and an Ace either 1 or 11 (player can choose). A blackjack is receiving a score of 21 from two cards, thus an Ace and any card worth 10 points.
(a) What is the probability of receiving a blackjack?
(b) The dealer is dealt one of their cards face down and one face up. Suppose the "show" card is an Ace. What is the probability that the dealer has a blackjack? (For simplicity, assume you have not seen any other cards.)

Exercise 1.21 Consider drawing five cards at random from a standard deck of playing cards. Calculate the following probabilities.
(a) A straight (five cards in sequence, suit not relevant).
(b) A flush (five cards of the same suit, order not relevant).
(c) A full house (3-of-a-kind and a pair, e.g., three Kings and two " 3 's").

Exercise 1.22 In the poker game "Five Card Draw", a player first receives five cards drawn at random. The player decides to discard some of their cards and then receives replacement cards. Assume a player is dealt a hand with one pair and three unrelated cards and decides to discard the three unrelated cards to obtain replacements. Calculate the following conditional probabilities for the resulting hand after the replacements are made.
(a) Obtaining a four-of-a-kind.
(b) Obtaining a three-of-a-kind.
(c) Obtaining two pairs.
(d) Obtaining a straight or a flush.
(e) Ending with one pair.
absolutely convergent series, 367
acceptance and rejection, hypothesis testing, 272-274
across group variance, 97
almost sure convergence, 159
alternative hypothesis, 270-271
analog principle, 131
asymptotic confidence interval, 294
asymptotic coverage probability of interval estimator, 294
asymptotic Cramér-Rao efficiency, 211
asymptotic distribution: Bayesian analysis, 328-329; kernel den-
sity estimator, 347 ; for moment equations, 238-239; for plug-in estimators, 172
asymptotic equicontinuity, 360-362
asymptotic integrated mean squared error (AIMSE), 340-341
asymptotic limits, 149-150
asymptotic normality, maximum likelihood estimation (MLE), 209-211
asymptotic theory, advanced: convergence of moments in, 182-
183; Cornish-Fisher expansions in, 187-188; Edgeworth expansion for smooth function model in, 185-187; Edgeworth expansion for the sample mean in, 183-185; heterogeneous central limit theory in, 178-179; multivariate heterogeneous central limit theory in, 180; uniform central limit theory in, 180-181; uniform integrability in, 181-182; uniform stochastic bounds in, 182
asymptotic t test, 281-282
asymptotic uniform confidence interval, 299
asymptotic uniform coverage probability of interval estimator, 299
asymptotic uniformity, 290
axioms of probability, $2-4$; properties of probability function derived from, 4-5
backtracking algorithm, 256
bandwidth, kernel density estimator: parameters in, 334-335; recommendations for selection of, 344-346; reference bandwidths for, 341-343; Sheather-Jones, 343-344
Bayes estimator, 315-316
Bayesian methods: asymptotic distribution in, 328-329; Bayes estimator in, 315-316; Bayesian hypothesis testing in, 326327; Bayesian probability model in, 314-315; Bernoulli sampling in, 319-320; conjugate prior in, 318-319; credible sets in, 324-326; normal-gamma distribution in, 317-318; normal sampling in, 321-324; posterior density in, 315;
priors in, 316-317; sampling properties in normal model, 327-328
Bayesian probability model, 314-315
Bayes Risk, 316
Bayes Rule, 10-11
Bayes theorem for densities, 88-89
Bernoulli distribution, 56
Bernoulli random variable, 40-41
Bernoulli sampling, 319-320
Bernstein-von Mises theorem, 328
best linear unbiased estimator (BLUE), 138
best unbiased estimation, 138, 231-233
beta-binomial model, 107
beta distribution, 65-66
BFGS (Broyden-Fletcher-Goldfarb-Shanno), 262-264
bias, estimation, 135-136
bias-corrected variance estimator, 139-140
binomial coefficients, 13
binomial distribution, 57
binomial-Poisson model, 106-107
Binomial theorem, 13
bisection method, 253-254
bivariate distribution functions, 74-77
bivariate expectation, 81-83
bivariate random variables, 74
biweight kernel function, 333-334
Bonferroni's inequality, 4
Boole's inequality, 4
Borel sigma field, 17
bracketing number, 357-358, 365-366

Cauchy criterion, 367
Cauchy distribution, 39, 62
Cauchy-Schwarz inequality, 92-93
censored distributions, 47; normal, 116-117
center of mass, 25-26
central limit theorem (CLT), 149; application of, 169; asymptotic distribution for plug-in estimator in, 172; convergence in distribution in, 165-166; convergence of moment generating function in, 167-168; covariance matrix estimation in, 172; delta method in, 170-172; Edgeworth expansion for smooth function model in, 185-187; Edgeworth expansion for the sample mean in, 183-185; examples of, 171-172; functional, 359-361, 362-364; heterogeneous, 178-179; Lindberg-Lévy,
© Copyright, Princeton University Press. No part of this book may be distributed, posted, or reproduced in any form by digital or mechanical means without prior written permission of the publisher.
central limit theorem (cont.)
168-169; moments in, 167; multivariate, 170; multivariate heterogeneous, 180 ; sample mean, 166 ; stochastic order symbols in, 173-174; t-ratios, 173
central moments, 41, 230-231
chain rule of differentiation, 370
characteristic function, 51
Chebyshev's inequality, 152
chi-square distribution, 63-64
coin flips: equally likely outcomes with, 5 ; joint probabilities in, 8 ; outcomes of, 1-2
combinations, 11-13
comparison test, 367
concave functions, 42-43
conditional densities, visualizing, 86-87
conditional distribution for continuous $X, 85-86$
conditional distribution for discrete $X, 83-85$
conditional expectation, 93-95; existence and uniqueness of, 108; identification of, 109
conditional mean, 93
conditional probability, 6-7; Bayes Rule, 10-11
conditional variance, 96-98
confidence intervals: definitions in, 293-294; for estimated parameters, 296; interpretation of, 298-299; narrow, 299; for sample mean under non-normal sampling, 295; for sample mean under normal sampling, 294-295; simple, 294; by test inversion, 297-298; uniform, 299; use of, 298-299; for the variance, 296
conjugate gradient, 260
conjugate prior, 318-319
constrained optimization, 266-267
continuous mapping theorem (CMT), 149, 155-157, 170-171
continuous random variables, 29-30; expectation of, 37-38; transformations of, 33-35
continuous X, conditional distribution for, 85-86
convergence: almost sure, 159-160; in distribution, 165-166; moment generating function, 167-168; of moments,
182-183; in probability, 150-151, 353-354; tests for, 367-368
convergent series, 367
convex functions, 42-43
convolutions, 104-105
Cornish-Fisher expansions, 187-188
correlation, 90-92
counting rule, 12
covariance, 90-92; matrix estimation, 172
coverage probability of interval estimator, 293
Cramér-Rao lower bound, 206, 306; examples of, 206-208; for functions of parameters, 208
Cramér-Wold device, 170
credible sets, Bayesian analysis, 324-326
cross moment, 91-92
cumulants, 50-51; normal, 114
cumulative distribution function (CDF), 28-29
data generating process, 128-129
deciles, 30
degenerate random variables, 39
delta method, 170-172
density functions, random variables, 31-33
dependent events, 8
derivative rule of differentiation, 370
dice rolls: conditional probabilities in, 9 ; outcomes of, 3
differentiation, 369-370
digamma function, 251
discrete derivative, 251
discrete Jensen's inequality, 43
discrete random variables, 22-24, 77-78
discrete X, conditional distribution for, 83-85
distributions, 28-29; Bayesian asymptotic, 328-329; Bernoulli, 56; beta, 65-66; binomial, 57 ; bivariate random variables, 74-77; Cauchy, 39, 61, 119; censored, 47; chi-square, 63-64, 119 ; conditional distribution for continuous $X, 85-86$; conditional distribution for discrete $X, 83-85$; convergence in, 165-166; double exponential, 60; extreme value, 67-68; F, 64-65, 119; Gamma, 64; generalized exponential, 60-61; hierarchical, 105-108; kernel density estimator asymptotic, 347; logistic, 63; lognormal, 66-67; marginal, 80-81; of MLE under misspecification, 215-216; moments (see moments); multinomial, 58 ; negative binomial, 59 ; non-central chi-square, 65 ; normal-gamma, 317-318; Pareto, 66; quantiles, 30-31; sampling, 134-135; skewness, 32-33; student $t, 62$; symmetric, 45 ; $t, 119$; truncated, 45-47; univariate normal, 113-114; Weibull, 67; Wishart, 146
dominated convergence theorem, 373
Donsker's theorem, 362-364
double exponential distribution, 60
double factorial, 368-369
Edgeworth expansion: for the sample mean, 183-185; for smooth function model, 185-187
efficient score, 203
empirical distribution function (EDF), 241-242
empirical process theory: asymptotic equicontinuity, 360-
362; Donsker's theorem, 362-364; framework of, 352-353; functional central limit theory, 359-361; Glivenko-Cantelli theorem, 353-354; packing, covering, and bracketing numbers in, 354-358; uniform law of large numbers, 358-359
envelope function, 355
Epanechnikov kernel function, 333-334
equally likely outcomes, 5
estimated parameters, confidence intervals for, 296
estimation: Bayesian, 315-316; best unbiased, 138, 231-233; covariance matrix, 172; histogram density, 332-333; normal variance, 145 ; shrinkage (see shrinkage estimation); variance, 136-137, 139-140, 211-213
estimation bias, 135-136
estimators, 130-131; bias of density, 336-338; interval, 293-
294, 299; kernel density (see kernel density estimator); kernel smoothing, 332; plug-in, 133-134, 172
Euclidean norm, 100
Euler equation, 239-241
events, 1-2; dependent, 8 ; independent, 7-9; joint, 5-6; sigma field, 17; trivial, 5
expectation, 25-26; bivariate, 81-83; conditional, 93-95, 108; continuous random variables, 37-38; existence and uniqueness of conditional, 108; finiteness of, 26-27, 38-39; law of iterated expectations, 95-96
expectation inequality, 43
expected Hessian, 204
expected Hessian estimator, 212
expected log density, 196
exponential distribution, 59
exponentials, 369
extreme value distribution, 67-68
factorials, 368-369
fair coin flip, 5
Fatou's lemma, 373
F distribution, 64-65
finiteness of expectations, 26-27, 38-39
first fundamental theorem of calculus, 372
Fisher information, 203
four of a kind poker hand, 15
Fubini's theorem, 373
functional central limit theory (CLT), 359-361; Donsker's theorem, 362-364
gamma distribution, 64
gamma function, 374
Gaussian integral, 373-374
Gaussian kernel function, 333-334
generalized exponential distribution, 60-61
geometric mean inequality, 43-44
Glivenko-Cantelli theorem, 353-354
golden-section search, 256-257
gradient, 250
gradient descent, 260
Greek alphabet, xxiii
grid search, numerical optimization, 252-253, 255, 259
Gumbel distribution, 67-68

Hermite polynomials, 119-120
Hessian, 202-206, 250, 261-262
hierarchical distributions, 105-108
higher moments of sample mean, 142-144
histogram density estimation, 332-333
Hölder's inequality, 98-99
hypothesis testing: acceptance and rejection regions, 272-
274; asymptotic t test, 281-282; asymptotic uniformity,
290; Bayesian, 326-327; composite null hypothesis, 288-
289; likelihood ratio and t tests, 285-286; likelihood ratio test against composite alternatives, 284-285; likelihood ratio test for simple hypotheses, 282-283; Neyman-Pearson lemma, 283-284; one-sided tests, 275-277; power function, 275; p-value, 287-288; statistical significance, 286-287; t test with normal sampling, 280-281; two-sided tests, 277-278; type I and type II errors, 274-275; types of hypotheses in, 270-272; what does "Accept H_{0} " mean, 278-280
hypothesized value, 270
identification, multivariate distributions, 108-109
Inclusion-Exclusion Principle, 4
independence between random variables, 87-90
independent events, 7-9
information matrix equality, 204
integral, Gaussian, 373-374
integral test, 368
integrated mean squared error of density estimator, 339-340
integration, 372-373
interval estimator, 293-294, 299
invariance property, 197
inverse Mills ratio, 116

James-Stein shrinkage estimator, 304-308; positive-part estimator, 306-307
Jensen's inequality, 42-43; applications of, 43-44
joint density, 78; Bayesian analysis, 314-315; visualizing conditional densities, 86-87
joint distribution: covariance and correlation in, 90-92; law of
iterated expectations and, 95-96
joint events, 5-6
joint probability mass function, 77-78
kernel density estimator, 333-336; asymptotic distribution, 347; bias of, 336-338; computation of, 346-347; optimal kernel, 340-341; practical issues with, 346 ; recommendations for bandwidth selection, 344-346; reference bandwidth for, 341-343; undersmoothing, 347-348; variance estimation and standard errors, 339; variance of, 338-339
kernel functions, 333-336
kernel smoothing estimators, 332
Kronecker lemma, 368
Kullback-Leibler divergence, 213-214

Laplace random variable, 60
law of iterated expectations, 95-96
law of large numbers: asymptotic limits and, 149-150; Chebyshev's inequality and, 152, 154-155; continuous mapping theorem (CMT) and, 149, 155-157; convergence in probability and, 150-151; strong law of large numbers (SLLN) and, 159-160; uniformity over distributions and, 157-159; uniform law of large number (ULLN) and, 358-359; weak law of large numbers (WLLN) and, 149, 153-154, 157-159
law of total probability, 10
Legendre's duplication formula, 374
Leibniz rule, 373
L'Hôpital's rule, 370
likelihood analog principle, 196-197
likelihood function, 193-196
likelihood Hessian, 203
likelihood ratio test, 285-286; against composite alternatives, 284-285; for simple hypotheses, 282-283
likelihood score, 202
limits, 367
Lindeberg central limit theorem, 178-179; multivariate, 180
Lindeberg-Lévy central limit theorem, 168-169; multivariate, 170; uniform, 180-181
Lindeberg's condition, 178
© Copyright, Princeton University Press. No part of this book may be distributed, posted, or reproduced in any form by digital or mechanical means without prior written permission of the publisher.
linearity: of differentiation, 370 ; of expectation, 26 ; of integration, 372
line search, 255
Loève's c_{r} inequality, 44
logarithms, 369
logistic distribution, 63
log-likelihood function, 195-196, 202
lognormal distribution, 66-67
L_{r} distance, 355
Lyapunov's condition, 179
Lyapunov's inequality, 43
Maclaurin series expansion, 371
Mann-Wald theorem, 170-171
marginal densities, $80-81$
marginal distribution, 80-81
marginal likelihood, 315
Markov's inequality, 152
mathematics reference: differentiation, 369-370; exponentials, 369; factorials, 368-369; gamma function, 374; Gaussian integral, 373-374; integration, 372-373; limits, 367; logarithms, 369; matrix algebra, 374-376; mean value theorem, 371 ; series, 367-368
matrix algebra, 374-376
maximum likelihood estimation (MLE): approximating models and, 214-215; asymptotic Cramér-Rao efficiency and, 211; asymptotic normality and, 209-211; consistent estimation and, 208-209; Cramér-Rao lower bound and, 206-208; distribution under misspecification and, 215-216; examples of, 197-202; invariance property and, 197; Kullback-Leibler divergence and, 213-214; likelihood analog principle and, 196-197; likelihood function and, 193-196; parametric model and, 192-193; score, Hessian, and information in, 202-204; variance estimation and, 211-213; variance estimation under misspecification and, 216-217
mean, 39-41; conditional, 93; confidence intervals for sample under non-normal sampling and, 295; confidence intervals for sample under normal sampling and, 294-295; Edgeworth expansion for the sample and, 183-185; higher moments of sample and, 142-144; multivariate, 140-141, 225-226; sample, 131-132
mean squared error (MSE), 137-138; density estimator and, 339340; James-Stein shrinkage estimator and, 304-305; shrinkage estimation and, 302-303
mean value theorem, 371
method of moments: best unbiased estimation and, 231-233; empirical distribution function (EDF) and, 241-242; moment equations and, 237-241; moments distribution and, 226-227; multivariate means and, 225-226; parametric models and, 234-237; robust variance estimation and, 245 ; sample quantiles and, 242-244; smooth functions and, 227-230. See also moments
minimization: failures of, 258-259; in multiple dimensions, 259-266; nested, 267-268; in one dimension, 254-258
Minkowski's inequality, 98-99
mixtures: of normals, 68-69, 107-108; variance, 107
mode, distribution, 32
moment generating function (MGF), 47-49; convergence of, 167-168
moments, 41, 226-227; censored normal distribution, 117; central, 41, 230-231; central limit theorem (CLT), 167; convergence of, 182-183; higher, 142-144; normal, 114; truncated normal distribution, 116-117; vector-valued, 155. See also method of moments
monotone convergence theorem, 373
monotone probability inequality, 4
multinomial distribution, 58
multivariate central limit theorem, 170
multivariate distributions: bivariate distribution functions, 74-77; bivariate expectation, 81-83; bivariate random variables, 74; Cauchy-Schwarz inequality, 92-93; conditional distribution for continuous $X, 85-86$; conditional distribution for discrete X, 83-85; conditional expectation, 93-95; conditional variance, 96-98; convolutions, 104-105; covariance and correlation, $90-$ 92; existence and uniqueness of conditional expectation, 108; hierarchical distributions, 105-108; Hölder's and Minkowski's inequalities, 98-99; identification, 108-109; independence between random variables, $87-90$; law of iterated expectations, 95-96; marginal distribution, $80-81$; multivariate transformations, 104; normal, 117-118; pairs of multivariate vectors, 103; probability density function, 78-79; probability mass function, 77-78; properties of, 118-119; triangle inequalities, 100-101; vector notation, 99-100; visualizing conditional densities, 86-87
multivariate heterogeneous central limit theory, 180
multivariate means, 140-141, 225-226
multivariate normal sampling, 146
multivariate random vectors, 101-103
multivariate standard normal distribution, 117-118
multivariate transformations, 104
multivariate vectors: pairs of, 103; random, 101-103
negative binomial distribution, 59
Nelder-Mead method, 264-266
nested minimization, 267-268
Newton's method, 253, 255-256, 260-262
Neyman-Pearson lemma, 283-284
non-central chi-square distribution, 65
non-centrality parameter, 65
non-monotonic transformations, 35-36
non-normal sampling, confidence intervals for sample mean under, 295
nonparametric density estimation: asymptotic distribution, 347; bias of density estimator, 336-338; computation, 346-347; histogram density estimation, 332-333; integrated mean squared error of density estimator, 339-340; kernel density estimator, 333-336; optimal kernel, 340-341; practical issues in, 346; recommendations for bandwidth selection, 344-346; reference bandwidth for, 341-343; Sheather-Jones bandwidth, 343-344; undersmoothing, 347-348; variance estimation and standard errors, 339; variance of density estimator, 338-339
normal cumulants, 114
normal distribution, 61; Hermite polynomials, 119-120; moments of, 114; multivariate, 117-118; normal cumulants,
© Copyright, Princeton University Press. No part of this book may be distributed, posted, or reproduced in any form by digital or mechanical means without prior written permission of the publisher.

114; normal quantiles, 114-115; truncated and censored, 116-117; univariate, 113-114
normal-gamma distribution, 317-318
normal mixtures, 68-69, 107-108
normal quantiles, 114-115
normal residuals, 144-145
normal sampling model, 144; Bayesian methods and, 321-324;
confidence intervals for sample mean under, 294-295
normal variance estimation, 145
norm monotonicity, 44
notation, xxi-xxiii; common symbols, xxv-xxvi; Greek alphabet, xxiii; vector, 99-100
null hypothesis, 270-271; composite, 288-289
numerical derivative, 251
numerical optimization: constrained optimization, 266-267; failures of minimization, 258-259; minimization in multiple dimensions, 259-266; minimization in one dimension, 254-258; nested minimization, 267-268; numerical function evaluation and differentiation, 249-252; root finding, 252-254; tips and tricks, 268-269
objectivist approach in Bayesian analysis, 314
one pair poker hand, 16
one-sided tests, 275-277
optimal kernel, 340-341
ordered sampling: with replacement, 13; without replacement, 14
order statistics, 141-142
outcomes, 1-2; equally likely, 5
packing number, 355-357
parameters, 130-131; confidence intervals for estimated, 296; functions of, 133-134
parameter space, 56, 192
parametric distributions: Bernoulli distribution, 56; beta distribution, 65-66; binomial distribution, 57; Cauchy distribution, 62; chi-square, 63-64; double exponential distribution, 60; exponential distribution, 59-60; extreme value distribution, 67-68; F distribution, 64-65; Gamma distribution, 64; generalized exponential distribution, $60-61$; logistic, 63 ; lognormal distribution, 66-67; mixture of normals, 68-69; multinomial distribution, 58 ; negative binomial distribution, 59; non-central chi-square distribution, 65; normal distribution, 61; Pareto distribution, 66; Poisson distribution, 58-59; Rademacher distribution, 57; uniform distribution, 59; Weibull distribution, 67
parametric family, 192
parametric models, method of moments, 234-237. See also maximum likelihood estimation (MLE)
Pareto distribution, 66
partial derivative, 370
partitioning theorem, 2 ; law of total probability and, 10
parts, integration by, 372-373
percentiles, distribution, 30
permutations, 11-13
plug-in estimators, 133-134; asymptotic distribution for, 172 point estimators, 131
pointwise convergence in probability, 353

Poisson distribution, 58-59
poker hands, 15-16
population distribution, 128
positive-part estimator, 306-307
posterior density, Bayes Rule on, 315
Powerball game, 13-15
power function, hypothesis testing, 275
priors, Bayesian, 316-317
probability density function (PDF), 31-33, 78-79
probability function, 2-4; convergence, 150-151, 353-354;
properties of, 4-5; sigma fields, 16-17
probability integral transformation, 35
probability mass function, 23, 26-27, 77-78
probability model, Bayesian, 314-315
probability theory: Bayes Rule, 10-11; conditional, 6-7; equally
likely outcomes, 5 ; independence, $7-9$; joint events, $5-6$; law
of total, 10; outcomes and events, 1-2; permutations and
combinations, 11-13; poker hands, 15-16
pseudo-true parameter, 214-215
p-value, 287-288
quantiles, 30-31; method of moments, 242-244; normal, 114-115
quartiles, 30
Rademacher distribution, 57
random samples, 128-129
random variables: Bernoulli distribution, 56; binomial distribution, 57 ; bivariate, 74; Cauchy-Schwarz inequality, 92-93; censored distribution, 47; characteristic function, 51 ; conditional distribution for continuous $X, 85-86$; conditional distribution for discrete $X, 83-85$; continuous, 29-30, 33-35, $37-38$; convergence in probability, $150-151$; covariance matrix estimation, 172 ; cumulants, $50-51$; defined, 22 ; density function, 31-33; discrete, 22-24, 77-78; distribution function, 28-29; expectation, 25-27, 37-38, 51-52; exponential distribution, 29, 59-60; finiteness of expectations, 26-27, 38-39; hierarchical distributions, 105-108; Hölder's and Minkowski's inequalities, 98-99; independence between, $87-90$; Jensen's inequality, 42-44; lognormal distribution, 66-67; mean and variance, 39-41; moment generating function (MGF), 47-49; moments, 41 ; multinomial distribution, 58 ; non-monotonic transformation, 35-36; normal distribution, 61; Pareto distribution, 66; Poisson distribution, 58-59; quantiles, 30-31; Rademacher, 57; stochastic order symbols, 173-174; symmetric distribution, 45; transformations, 24-25, 33-36; t-ratios, 173; truncated distribution, 45-47; uniform distribution, 29, 59; unifying notation, 39; Weibull distribution, 67
ratio test, 368
real numbers, xxi
rectangular kernel function, 333-334
reference bandwidth, 341-343
replacement, sampling with and without, 13-15
residuals, normal, 144-145
Riemann integral, 372
Riemann-Stieltijes integration, 39, 51-52, 372-373
robust variance estimation, 245
root finding, 252-254 distributed, posted, or reproduced in any form by digital or mechanical means without prior written permission of the publisher.
sample Hessian estimator, 212
sample mean, 131-132, 166; studentized ratio, 146
samples, 128-130
sample size, 129
sample space, 1-2, 6
sampling: Bayesian analysis normal, 321-324; Bernoulli, 319320; best unbiased estimator, 138; confidence intervals for sample mean under non-normal, 295; confidence intervals for sample mean under normal, 294-295; empirical illustration, 130; estimation bias, 135-136; estimation of variance, 139-140; estimation variance, 136-137; expected value of transformations, 132-133; higher moments of sample mean, 142-144; mean squared error (MSE), 137-138; multivariate means, 140-141; multivariate normal, 146; normal residuals, 144-145; normal sampling model, 144; normal variance estimation, 145; order statistics, 141-142; properties in normal Bayesian model, 327-328; samples, 128-130; standard error, 140; statistics, parameters, and estimators, 130-131; t test with normal, 280-281; with and without replacement, 13-15
sampling distribution, 134-135
scalars, xxi, 374
scaled student t random variable, 62
Schwarz inequality, 101
second fundamental theorem of calculus, 372
series, 367-368
Sheather-Jones bandwidth, 343-344
shrinkage approach in Bayesian analysis, 314
shrinkage estimation: interpretation of Stein effect, 306;
James-Stein shrinkage estimator, 304-305; mean squared error (MSE) and, 302-303; positive-part estimator, 306-307
sigma fields, 16-17
Silverman's Rule-of-Thumb, 342-343
simple confidence intervals, 294
skewness, 32-33
smooth functions, 227-230
standard deviation (sd), 40
standard error, 140; kernel density estimator, 339
standard normal density function, 61
standard normal distribution, 113-114
Stars and Bars theorem, 14-15
statistically independent events, 7-8
statistical significance, hypothesis testing, 286-287
statistics, 130-131; order, 141-142
steepest descent, 260
Stein-Rule shrinkage estimators. See shrinkage estimation
Stein's lemma, 305
step-length, 256, 261
Stirling's approximation, 374
stochastic equicontinuity, 360
stochastic order symbols, 173-174
St. Petersburg paradox, 26-27
strong convergence, 159
strong law of large numbers (SLLN), 159-160
studentized ratio, 146
student t distribution, 61
subjectivist approach in Bayesian analysis, 314
summation notation, 367
support, discrete random variable, 23
symmetric distributions, 45
Taylor's theorem, 371
t distributions, 119
test inversion, confidence intervals by, 297-298
tests for convergence, 367-368
theorem of Cesaro means, 368
three of a kind poker hand, 16
Toplitz lemma, 368
transformations, 24-25; continuous random variables, 33-35; Cramér-Rao lower bound for, 208; expected value of, 132-133; multivariate, 104; non-monotonic, 35-36
transpose, 99
t-ratios, 173; Edgeworth expansion for smooth function model, 185-187
triangle inequalities, $100-101$
triangular kernel function, 333-334
trigamma function, 251
trivial events, 5
true parameter value, 193
truncated distributions, 45-47; normal, 116-117
t-statistic, 146
t test, 285-286; with normal sampling, 280-281
tuning parameter, kernel density estimator, 334-335
two-sided tests, hypothesis testing, 277-278
type I errors, 274-275
type I extreme value distribution, 67-68
type II errors, 274-275
unconditional probability, 6-7
undersmoothing, 347-348
uniform central limit theory, 180-181
uniform confidence intervals, 299
uniform convergence, Glivenko-Cantelli theorem, 353-354
uniform coverage probability of interval estimator, 299
uniform distribution, 59
uniform integrability, 181-182
uniform law of large numbers (ULLN), 358-359
uniform stochastic bounds, 182
unifying notation, 39
univariate normal distribution, 113-114
unordered sampling: with replacement, 14; without replacement, 14
variance, 39-41; conditional, 96-98; confidence intervals for the, 296; density estimator, 338-339; estimation, 136-137, 139-
140, 211-213; robust, 245; estimation under misspecification,
216-217; mixtures, 107
vectors, xxi, 374; multivariate random, 101-103; notation, 99-100; triangle inequalities, 100-101
vector-valued moments, 155
visualizing conditional densities, 86-87
wages: applying central limit theorem to, 169 ; bivariate distribution of experience and, 78-79; conditional expectation, 94-95; correlations of experience, education and, 92 ; distribution and continuous random variables, 29-30; histogram density estimation, 332-333; quantiles, 31; skewness, 32-33
wages and education: Bayes Rule, 11; conditional distribution for discrete $X, 83-85$; conditional probability, 7; conditional variance, 98 ; correlations of experience, 92 ; joint events,5-6; joint probabilities, 8; law of iterated
expectations, 96; mean, variance, and standard deviation, 41
weak convergence, 159
weak law of large numbers (WLLN), 149, 153; counterexamples, 153-154; uniformity over distributions, 157-159; vector-valued moments, 155
Weibull distribution, 67
Wishart distribution, 146
z-statistic, 146

[^0]: ${ }^{1}$ For events in a sigma field. See Section 1.14.

[^1]: ${ }^{2}$ Calculated from a sample of 3,584 weekly prices of the S\&P Index between 1950 and 2017.
 ${ }^{3}$ Calculated from a sample of 50,742 U.S. wage earners in 2009.

[^2]: ${ }^{4}$ Calculated from the same sample of 50,742 U.S. wage earners in 2009.

[^3]: ${ }^{5}$ Except in a James Bond movie.

[^4]: ${ }^{6}$ Consequently, it is reasonable to enter the sports bar to learn the truth!

[^5]: ${ }^{7}$ Remember this when you (or a friend) asserts "I have nothing to wear!"

[^6]: ${ }^{8}$ There are also other prizes for other combinations.

[^7]: ${ }^{9}$ A typical game involves additional complications, which we ignore.

