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CHAPTER 1

BASIC PROBABILITY THEORY

1.1 INTRODUCTION
Probability theory is foundational for economics and econometrics. Probability is the mathematical lan-
guage used to handle uncertainty, which is central for modern economic theory. Probability theory is also
the foundation of mathematical statistics, which is the foundation of econometric theory.

Probability is used to model uncertainty, variability, and randomness. When we say that something is
“uncertain”, we mean that the outcome is unknown. For example, how many students will there be in next
year’s Ph.D. entering class at your university? “Variability” means that the outcome is not the same across all
occurrences. For example, the number of Ph.D. students fluctuates from year to year. “Randomness” means
that the variability has some sort of pattern. For example, the number of Ph.D. students may fluctuate between
20 and 30, with 25 more likely than either 20 or 30. Probability gives us a mathematical language to describe
uncertainty, variability, and randomness.

1.2 OUTCOMES AND EVENTS
Suppose you take a coin, flip it in the air, and let it land on the ground. What will happen? Will the result be
“heads” (H) or “tails” (T)? We do not know the result in advance, so we describe the outcome as random.

Suppose you record the change in the value of a stock index over a period of time. Will the value increase
or decrease? Again, we do not know the result in advance, so we describe the outcome as random.

Suppose you select an individual at random and survey them about their economic situation. What is
their hourly wage? We do not know in advance. The lack of foreknowledge leads us to describe the outcome
as random.

We will use the following terms.
An outcome is a specific result. For example, in a coin flip, an outcome is either H or T. If two coins are

flipped in sequence, we can write an outcome as HT for a head and then a tails. A roll of a six-sided die has
the six outcomes {1, 2, 3, 4, 5, 6}.

The sample space S is the set of all possible outcomes. In a coin flip, the sample space is S={H,T}. If two
coins are flipped, the sample space is S={HH,HT,TH,TT}.

An event A is a subset of outcomes in S. An example event from the roll of a die is A={1, 2}.
The one-coin and two-coin sample spaces are illustrated in Figure 1.1. The event {HH,HT} is illustrated

by the ellipse in Figure 1.1(b).
Set theoretic manipulations are helpful in describing events. We will use the following concepts.

1
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HT

TT

TH

HH

S

H

T

S

(a) One coin (b) Two coins

FIGURE 1.1 Sample space

Definition 1.1 For events A and B:

1. A is a subset of B, written A⊂B, if every element of A is an element of B.
2. The event with no outcomes ∅ ={ } is called the null or empty set.
3. The union A∪B is the collection of all outcomes that are in either A or B (or both).
4. The intersection A∩B is the collection of elements that are in both A and B.
5. The complement Ac of A are all outcomes in S which are not in A.
6. The events A and B are disjoint if they have no outcomes in common: A∩B= ∅.
7. The events A1,A2, . . . are a partition of S if they are mutually disjoint and their union is S.

Events satisfy the rules of set operations, including the commutative, associative, and distributive laws.
The following theorem is useful.

Theorem 1.1 Partitioning Theorem. If {B1,B2, · · · } is a partition of S, then for any event A,

A=
∞⋃
i=1
(A∩Bi) .

The sets (A∩Bi) are mutually disjoint.

A proof is provided in Section 1.15.

1.3 PROBABILITY FUNCTION
Definition 1.2 A function P which assigns a numerical value to events1 is called a probability function if
it satisfies the following axioms of probability:

1. P [A]≥ 0.

1For events in a sigma field. See Section 1.14.
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2. P [S]= 1.

3. If A1,A2, . . . are disjoint, then P

⎡
⎣

∞⋃
j=1

Aj

⎤
⎦=

∞∑
j=1

P

[
Aj
]
.

This textbook uses the notation P [A] for the probability of an event A. Other common notations include
P(A) and Pr(A).

Let us examine this definition. The phrase “a function P which assigns a numerical value to events”
means that P is a function from the space of events to the real line. Thus probabilities are numbers. Now
consider the axioms. The first axiom states that probabilities are nonnegative. The second axiom is essentially
a normalization: the probability that “something happens” is 1.

The third axiom imposes considerable structure. It states that probabilities are additive on disjoint events.
That is, if A and B are disjoint, then

P [A∪B]= P [A]+ P [B] .

Take, for example, the roll of a six-sided die which has the possible outcomes {1, 2, 3, 4, 5, 6}. Since the
outcomes are mutually disjoint, the third axiom states that P [1 or 2]= P [1]+ P [2].

When using the third axiom, it is important to be careful that it is applied only to disjoint events. Take, for
example, the roll of a pair of dice. Let A be the event “1 on the first roll” and B the event “1 on the second roll”.
It is tempting to write P [“1 on either roll”]= P [A∪B]= P [A]+ P [B], but the second equality is incorrect,
since A and B are not disjoint. The outcome “1 on both rolls” is an element of both A and B.

Any function P which satisfies the axioms is a valid probability function. Take the coin flip example. One
valid probability function sets P [H]= 0.5 and P [T]= 0.5. (This is typically called a fair coin.) A second valid
probability function setsP [H]= 0.6 andP [T]= 0.4. However, a functionwhich setsP [H]=−0.6 is not valid
(it violates the first axiom), and a function which sets P [H]= 0.6 and P [T]= 0.6 is not valid (it violates the
second axiom).

While the definition states that a probability function must satisfy certain rules, it does not describe the
meaning of probability. The reason is because there are multiple interpretations. One view is that probabilities
are the relative frequency of outcomes, as in a controlled experiment. The probability that the stock market
will increase is the frequency of increases. The probability that an unemployment duration will exceed one
month is the frequency of unemployment durations exceeding one month. The probability that a basketball
player will make a free throw shot is the frequency with which the player makes free throw shots. The prob-
ability that a recession will occur is the relative frequency of recessions. In some examples, this definition is
conceptually straightforward, as the experiment repeats or has multiple occurances. In other cases, a situa-
tion occurs exactly once and will never be repeated. As I write this paragraph, questions of uncertainty of
general interest include “Will global warming exceed 2 degrees?” and “When will the COVID-19 epidemic
end?” In these cases, it is difficult to interpret a probability as a relative frequency, as the outcome can only
occur once. The interpretation can be salvaged by viewing “relative frequency” abstractly by imagining many
alternative universes which start from the same initial conditions but evolve randomly. While this solution
works (technically), it is not completely satisfactory.

Another view is that probability is subjective. This view holds that probabilities can be interpreted as
degrees of belief. If I say “The probability of rain tomorrow is 80%”, I mean that this is my personal subjective
assessment of the likelihood based on the information available to me. This view may seem too broad, as
it allows for arbitrary beliefs, but the subjective interpretation requires subjective probability to follow the
axioms and rules of probability. Amajor disadvantage associated with this approach is that it is not necessarily
appropriate for scientific discourse.
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What is common between the two definitions is that the probability function follows the same axioms—
otherwise, the label “probability” should not be used.

This concept can be illustrated with two real-world examples. The first is from finance. LetU be the event
that the S&P stock index increases in a given week, and let D be the event that the index decreases. This
is similar to a coin flip. The sample space is {U,D}. We compute2 that P [U]= 0.57 and P [D]= 0.43. The
probability 57% of an increase is somewhat higher than a fair coin. The probability interpretation is that the
index will increase in value in 57% of randomly selected weeks.

The second example concerns wage rates in the United States. Take a randomly selected wage earner.
Let H be the event that their wage rate exceeds $25/hour, and L be the event that their wage rate is less than
$25/hour. Again the structure is similar to a coin flip. We calculate3 that P [H]= 0.31 and P [L]= 0.69. To
interpret this as a probability, we can imagine surveying a random individual. Before the survey, we know
nothing about the individual. Their wage rate is uncertain and random.

1.4 PROPERTIES OF THE PROBABILITY FUNCTION
The following properties of probability functions can be derived from the axioms of probability.

Theorem 1.2 For events A and B, the following properties hold:

1. P [Ac]= 1− P [A].
2. P [∅]= 0.
3. P [A]≤ 1.
4. Monotone Probability Inequality: If A⊂B, then P [A]≤ P [B].
5. Inclusion-Exclusion Principle: P [A∪B]= P [A]+ P [B]− P [A∩B].
6. Boole’s Inequality: P [A∪B]≤ P [A]+ P [B].
7. Bonferroni’s Inequality: P [A∩B]≥ P [A]+ P [B]− 1.

Proofs are provided in Section 1.15.
Property 1 states that the probability that an event does not occur equals 1 minus the probability that the

event occurs.
Property 2 states that “nothing happens” occurs with 0 probability. (Remember this when asked “What

happened today in class?”)
Property 3 states that probabilities cannot exceed 1.
Property 4 shows that larger sets necessarily have larger probability.
Property 5 is a useful decomposition of the probability of the union of two events.
Properties 6 and 7 are implications of the inclusion-exclusion principle and are frequently used in prob-

ability calculations. Boole’s inequality shows that the probability of a union is bounded by the sum of the
individual probabilities. Bonferroni’s inequality shows that the probability of an intersection is bounded
below by an expression involving the individual probabilities. A useful feature of these inequalities is that
the right-hand sides only depend on the individual probabilities.

2Calculated from a sample of 3,584 weekly prices of the S&P Index between 1950 and 2017.
3Calculated from a sample of 50,742 U.S. wage earners in 2009.
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A further comment related to property 2 is that any event which occurs with probability 0 or 1 is called
trivial. Such events are essentially nonrandom. In the coin flip example, we could define the sample space as
S={H,T, Edge, Disappear}, where “Edge” means the coin lands on its edge and “Disappear” means the coin
disappears into the air. If P

[
Edge

]= 0 and P

[
Disappear

]= 0, then these events are trivial.

1.5 EQUALLY LIKELY OUTCOMES
When we build probability calculations from foundations, it is often useful to consider settings where sym-
metry implies that a set of outcomes is equally likely. Standard examples are a coin flip and the toss of a die.
We describe a coin as fair if the event of a head is as equally likely as the event of a tail. We describe a die as
fair if the event of each face is equally likely. Applying the axioms, we deduce the following.

Theorem 1.3 Principle of Equally Likely Outcomes: If an experiment has N outcomes a1, . . . , aN which
are symmetric in the sense that each outcome is equally likely, then P [ai]= 1

N .

For example, a fair coin satisfies P [H]= P [T]= 1/2, and a fair die satisfies P [1]= · · · = P [6]= 1/6.
In some contexts, deciding which outcomes are symmetric and equally likely can be confusing. Take the

two-coin example. We could define the sample space as {HH,TT,HT}, where HT means “one head and one
tail”. If we guess that all outcomes are equally likely, we would set P [HH]= 1/3, etc. However, if we define the
sample space as {HH,TT,HT,TH} and guess that all outcomes are equally likely, we would find P [HH]= 1/4.
Both answers (1/3 and 1/4) cannot be correct. The implication is that we should not apply the principle of
equally likely outcomes simply because there is a list of outcomes. Instead, there should be a justifiable reason
for the outcomes to be equally likely. In this two-coin example, there is no principled reason for symmetry
without further analysis, so the property should not be applied. We return to this issue in Section 1.8.

1.6 JOINT EVENTS
Take two eventsH and C. For concreteness, letH be the event that an individual’s wage exceeds $25/hour, and
letC be the event that the individual has a college degree.We are interested in the probability of the joint event
H ∩C. This is the event “H and C”, or in words, that the individual’s wage exceeds $25/hour and they have a
college degree. Previously it was noted that P [H]= 0.31. We can similarly calculate that P [C]= 0.36. What
about the joint event H ∩C?

From Theorem 1.2, we can deduce that 0≤ P [H ∩C]≤ 0.31. (The upper bound is Bonferroni’s inequal-
ity.) Thus from the knowledge of P [H] and P [C] alone, we can bound the joint probability but not determine
its value. It turns out that the actual4 probability is P [H ∩C]= 0.19.

From the three known probabilities and the properties of Theorem 1.2, we can calculate the probabilities
of the various intersections. The results are displayed in the following chart. The four numbers in the central
box are the probabilities of the joint events; for example, 0.19 is the probability of both a highwage and a college
degree. The largest of the four probabilities is 0.52: the joint event of a lowwage and no college degree. The four
probabilities sum to 1, because the events are a partition of the sample space. The sums of the probabilities in

4Calculated from the same sample of 50,742 U.S. wage earners in 2009.
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each column are reported in the bottom row: the probabilities of a college degree and no degree, respectively.
The sums by row are reported in the rightmost column: the probabilities of a high and low wage, respectively.

Joint Probabilities: Wages and Education

C N Any Education
H 0.19 0.12 0.31
L 0.17 0.52 0.69

Any Wage 0.36 0.64 1.00

As another illustration, let us examine stock price changes. We reported before that the probability of an
increase in the S&P stock index in a given week is 57%. Now consider the change in the stock index over 2
sequential weeks. What is the joint probability? The results are displayed in the following chart.Ut means that
the index increases, Dt means that the index decreases, Ut−1 means that the index increases in the previous
week, and Dt−1 means that the index decreases in the previous week.

Joint Probabilities: Stock Returns

Ut−1 Dt−1 Any Past Return
Ut 0.322 0.245 0.567
Dt 0.245 0.188 0.433

Any Return 0.567 0.433 1.000

The four numbers in the central box sum to 1, since they are a partition of the sample space. We can see
that the probability that the stock price increases for 2 weeks in a row is 32% and that it decreases for 2 weeks
in a row is 19%. The probability is 25% for an increase followed by a decrease, and also 25% for a decrease
followed by an increase.

1.7 CONDITIONAL PROBABILITY
Take two eventsA and B. For example, letA be the event “Receive a grade of A on the econometrics exam”, and
let B be the event “Study econometrics 12 hours a day”. We might be interested in the question: Does B affect
the likelihood of A? Alternatively, we may be interested in questions such as: Does attending college affect the
likelihood of obtaining a high wage? Or: Do tariffs affect the likelihood of price increases? These are questions
of conditional probability.

Abstractly, consider two events A and B. Suppose that we know that B has occurred. Then the only way
for A to occur is if the outcome is in the intersection A∩B. So we are asking: “What is the probability that
A∩B occurs, given that B occurs?” The answer is not simply P [A∩B]. Instead, we can think of the “new”
sample space as B. To do so, we normalize all probabilities by P [B]. We arrive at the following definition.

Definition 1.3 If P [B]> 0, the conditional probability of A given B is

P [A |B]= P [A∩B]
P [B]

.

The notation “A |B” means “A given B” or “A assuming that B is true”. To add clarity, we will sometimes
refer to P [A] as the unconditional probability to distinguish it from P [A |B].
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For example, take the roll of a fair die. LetA={1, 2, 3, 4} and B={4, 5, 6}. The intersection isA∩B={4},
which has probabilityP [A∩B]= 1/6. The probability ofB isP [B]= 1/2. ThusP [A |B]= (1/6)/(1/2)= 1/3.
This can also be calculated by observing that conditional onB, the events {4}, {5}, and {6} each have probability
1/3. Event A only occurs given B if {4} occurs. Thus P [A |B]= P [4 |B]= 1/3.

Consider our example of wages and college education. From the probabilities reported in Section 1.6, we
can calculate that

P [H |C]= P [H ∩C]
P [C]

= 0.19
0.36

= 0.53

and

P [H |N]= P [H ∩N]
P [N]

= 0.12
0.64

= 0.19.

There is a considerable difference in the conditional probability of receiving a high wage conditional on a
college degree: 53% versus 19%.

As another illustration, let us examine stock price changes. We calculate that

P [Ut |Ut−1]= P [Ut ∩Ut−1]
P [Ut−1]

= 0.322
0.567

= 0.568

and

P [Ut |Dt−1]= P [Ut ∩Dt−1]
P [Dt−1]

= 0.245
0.433

= 0.566.

In this case, the two conditional probabilities are essentially identical. Thus the probability of a price increase
in a given week is unaffected by the previous week’s result. This is an important special case and is explored
further in the next section.

1.8 INDEPENDENCE
We say that events are independent if their occurrence is unrelated, or equivalently, that the knowledge of
one event does not affect the conditional probability of the other event. Take two coin flips. If there is no
mechanism connecting the two flips, we would typically expect that neither flip is affected by the outcome
of the other. Similarly, if we take two die throws, we typically expect there is no mechanism connecting the
throws and thus no reason to expect that one is affected by the outcome of the other. As a third example,
consider the crime rate in London and the price of tea in Shanghai. There is no reason to expect one of these
two events to affect the other event.5 In each of these cases, we describe the events as independent.

This discussion implies that two unrelated (independent) events A and B will satisfy the properties
P [A |B]= P [A] and P [B |A]= P [B]. In words, the probability that a coin is H is unaffected by the outcome
(H or T) of another coin. From the definition of conditional probability, this implies P [A∩B]= P [A]P [B].
Let us use this as the formal definition.

Definition 1.4 The events A and B are statistically independent if P [A∩B]= P [A]P [B] .

We typically use the simpler label independent for brevity. As an immediate consequence of the
derivation, we obtain the following equivalence.

5Except in a James Bond movie.
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Theorem 1.4 If A and B are independent with P [A]> 0 and P [B]> 0, then

P [A |B]= P [A]

P [B |A]= P [B] .

Consider the stock index illustration in Section 1.6. We found that P [Ut |Ut−1]= 0.57 and
P [Ut |Dt−1]= 0.57. This means that the probability of an increase is unaffected by the outcome from the
previous week, which satisfies the definition of independence. It follows that the events Ut and Ut−1 are
independent.

When events are independent, then joint probabilities can be calculated by multiplying individual proba-
bilities. Take two independent coin flips.Write the possible results of the first coin as {H1,T1} and the possible
results of the second coin as {H2,T2}. Let p= P [H1] and q= P [H2]. We obtain the following chart for the
joint probabilities.

Joint Probabilities: Independent Events

H1 T1
H2 pq (1− p)q q
T2 p(1− q) (1− p)(1− q) 1− q

p 1− p 1

The chart shows that the four joint probabilities are determined by p and q, the probabilities of the individual
coins. The entries in each column sum to p and 1− p, and the entries in each row sum to q and 1− q.

If two events are not independent, we say that they are dependent. In this case, the joint event A∩B
occurs at a different rate than predicted if the events were independent.

For example, consider wage rates and college degrees. We have already shown that the conditional prob-
ability of a high wage is affected by a college degree, which demonstrates that the two events are dependent.
What we nowdo is see what happenswhenwe calculate the joint probabilities from the individual probabilities
under the (false) assumption of independence. The results are shown in the following chart.

Joint Probabilities: Wages and Education

C N Any Education
H 0.11 0.20 0.31
L 0.25 0.44 0.69

Any Wage 0.36 0.64 1.00

The entries in the central box are obtained by multiplication of the individual probabilities (e.g.,
P [H ∩C]= 0.31× 0.36= 0.11). What we see is that the diagonal entries are much smaller, and the off-
diagonal entries are much larger, than the corresponding correct joint probabilities. In this example, the joint
eventsH ∩C and L∩N occur more frequently than that predicted if wages and education were independent.

We can use independence to make probability calculations. Take the two-coin example. If two sequential
fair coin flips are independent, then the probability that both are heads is

P [H1 ∩H2]= P [H1]× P [H2]= 1
2

× 1
2

= 1
4
.

This addresses the issue raised in Section 1.5. The probability of HH is 1/4, not 1/3. The key is the assumption
of independence, not how the outcomes are listed.
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As another example, consider throwing a pair of fair dice. If the two dice are independent, then the
probability of two 1’s is P [1]× P [1]= 1/36.

Naïvely, one might think that independence relates to disjoint events, but the converse is true. If A and
B are disjoint, then they cannot be independent. That is, disjointness means A∩B= ∅, and by property 2 of
Theorem 1.2,

P [A∩B]= P [∅]= 0 �= P [A]P [B]

and the right side is nonzero by the definition of independence.
Independence lies at the core of many probability calculations. If you can break an event into the joint

occurance of several independent events, then the probability of the event is the product of the individual
probabilities.

Take, for example, the two-coin example and the event {HH,HT}. This equals {First coin is H, Second
coin is either H or T}. If the two coins are independent, this has probability

P [H]× P [H or T]= 1
2

× 1= 1
2
.

As a bitmore complicated example, what is the probability of “rolling a seven” from a pair of dice,meaning
that the two faces add to seven? We can calculate this as follows. Let (x, y) denote the outcomes from the two
(ordered) dice. The following outcomes yield a seven: {(1, 6), (2, 5), (3, 4), (4, 3), (5, 2), (6, 1)}. The outcomes
are disjoint. Thus by the third axiom, the probability of a seven is the sum

P [7]= P [1, 6]+ P [2, 5]+ P [3, 4]+ P [4, 3]+ P [5, 2]+ P [6, 1] .

Assume that the two dice are independent of one another, so the probabilities are products. For fair dice, the
above expression equals

P [1]× P [6]+ P [2]× P [5]+ P [3]× P [4]+ P [4]× P [3]+ P [5]× P [2]+ P [6]× P [1]

= 1
6

× 1
6

+ 1
6

× 1
6

+ 1
6

× 1
6

+ 1
6

× 1
6

+ 1
6

× 1
6

+ 1
6

× 1
6

= 6× 1
62

= 1
6
.

Now suppose that the dice are not fair. Suppose they are independent, but each is weighted so that the
probability of a “1” is 2/6 and the probability of a “6” is 0. We revise the calculation to find

P [1]× P [6]+ P [2]× P [5]+ P [3]× P [4]+ P [4]× P [3]+ P [5]× P [2]+ P [6]× P [1]

= 2
6

× 0
6

+ 1
6

× 1
6

+ 1
6

× 1
6

+ 1
6

× 1
6

+ 1
6

× 1
6

+ 0
6

× 2
6

= 1
9
.
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1.9 LAW OF TOTAL PROBABILITY
An important relationship can be derived from the partitioning theorem (Theorem 1.1) which states that if
{Bi} is a partition of the sample space S, then

A=
∞⋃
i=1
(A∩Bi) .

Since the events (A∩Bi) are disjoint, an application of the third axiom and the definition of conditional
probability implies

P [A]=
∞∑
i=1

P [A∩Bi]=
∞∑
i=1

P [A |Bi]P [Bi] .

This is called the Law of Total Probability.

Theorem 1.5 Law of Total Probability. If {B1,B2, . . .} is a partition of S, and P [Bi]> 0 for all i, then

P [A]=
∞∑
i=1

P [A |Bi]P [Bi] .

For example, take the roll of a fair die and the events A={1, 3, 5} and Bj ={j}. We calculate that

6∑
i=1

P [A |Bi]P [Bi]= 1× 1
6

+ 0× 1
6

+ 1× 1
6

+ 0× 1
6

+ 1× 1
6

+ 0× 1
6

= 1
2
,

which equals P [A]= 1/2, as claimed.

1.10 BAYES RULE
A famous result is credited to Reverend Thomas Bayes.

Theorem 1.6 Bayes Rule. If P [A]> 0 and P [B]> 0, then

P [A |B]= P [B |A]P [A]
P [B |A]P [A]+ P [B |Ac]P [Ac]

.

Proof. The definition of conditional probability (applied twice) implies

P [A∩B]= P [A |B]P [B]= P [B |A]P [A] .

Solving, we find

P [A |B]= P [B |A]P [A]
P [B]

.

Applying the law of total probability to P [B] using the partition {A,Ac}, we obtain the stated result. �

Bayes Rule is terrifically useful in many contexts.
As one example, suppose you walk by a sports bar where you see a group of people watching a sports

match which involves a popular local team. Suppose you suddenly hear a roar of excitement from the bar. Did
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the local team just score? To investigate this by Bayes Rule, letA={score} and B={crowd roars}. Assume that
P [A]= 1/10, P [B |A]= 1, and P [B |Ac]= 1/10 (there are other events which can cause a roar). Then

P [A |B]= 1× 1
10

1× 1
10 + 1

10 × 9
10

= 10
19

	 53%.

This is slightly over one-half. Under these assumptions, the roar of the crowd is informative though not
definitive.6

As another example, suppose there are two types of workers: hard workers (H) and lazy workers (L).
Suppose that we know fromprevious experience thatP [H]= 1/4 andP [L]= 3/4. Suppose we can administer
a screening test to determine whether an applicant is a hard worker. Let T be the event that an applicant has
a high score on the test. Suppose that P [T |H]= 3/4 and P [T | L]= 1/4. That is, the test has some signal but
is not perfect. We are interested in calculating P [H |T], the conditional probability that an applicant is a hard
worker, given that they have a high test score. Bayes Rule tells us

P [H |T]= P [T |H]P [H]
P [T |H]P [H]+ P [T | L]P [L]

=
3
4 × 1

4
3
4 × 1

4 + 1
4 × 3

4
= 1

2
.

The probability the applicant is a hard worker is only 50%! Does this mean the test is useless? Consider the
question: What is the probability an applicant is a hard worker, given that they had a poor (P) test score?
We find

P [H | P]= P [P |H]P [H]
P [P |H]P [H]+ P [P | L]P [L]

=
1
4 × 1

4
1
4 × 1

4 + 3
4 × 3

4
= 1

10
.

This is only 10%. Thus what the test tells us is that if an applicant scores high, we are uncertain about that
applicant’s work habits; but if an applicant scores low, it is unlikely that they are a hard worker.

To revisit our real-world example of education and wages, recall that we calculated that the probability of
a high wage (H) given a college degree (C) isP [H |C]= 0.53. Applying Bayes Rule, we can find the probability
that an individual has a college degree given that they have a high wage is

P [C |H]= P [H |C]P [C]
P [H]

= 0.53× 0.36
0.31

= 0.62.

The probability of a college degree given that they have a low wage (L) is

P [C | L]= P [L |C]P [C]
P [L]

= 0.47× 0.36
0.69

= 0.25.

Thus given this one piece of information (if the wage is above or below $25), we have probabilistic information
about whether the individual has a college degree.

1.11 PERMUTATIONS AND COMBINATIONS
For some calculations, it is useful to count the number of individual outcomes. For some of these calculations,
the concepts of counting rules, permutations, and combinations are useful.

The first definition we explore is the counting rule, which shows how to count options when we combine
tasks. For example, suppose you own ten shirts, three pairs of jeans, five pairs of socks, four coats and two

6Consequently, it is reasonable to enter the sports bar to learn the truth!
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hats. How many clothing outfits can you create, assuming you use one of each category? The answer is 10×
3× 5× 4× 2= 1200 distinct outfits.7

Theorem 1.7 Counting Rule. If a job consists of K separate tasks, the kth of which can be done in nk ways,
then the entire job can be done in n1n2 · · · nK ways.

The counting rule is intuitively simple but is useful in a variety of modeling situations.
The second definition we explore is that of a permutation. A permutation is a rearrangement of the order.

Suppose you take a classroom of 30 students. Howmany ways can you arrange their order? Each arrangement
is called a “permutation.” To calculate the number of permutations, observe that there are 30 students who can
be placed first. Given this choice, there are 29 students who can be placed second. Given these two choices,
there are 28 students for the third position, and so on. The total number of permutations is

30× 29× · · · × 1= 30!
Here, the symbol ! denotes the factorial. (See Section A.3.)

The general solution is as follows.

Theorem 1.8 The number of permutations of a group of N objects is N!
Suppose we are trying to select an ordered five-student team from a 30-student class for a competition.

How many ordered groups of five are there? The calculation is much the same as above, but we stop once the
fifth position is filled. Thus the number is

30× 29× 28× 27× 26= 30!
25! .

The general solution is as follows.

Theorem 1.9 The number of permutations of a group of N objects taken K at a time is

P(N,K)= N!
(N −K)! .

The third definition we explore is that of a combination. A combination is an unordered group of objects.
For example, revisit the idea of selecting a five-student team for a competition, but now assume that the team is
unordered. Then the question is: Howmany five-member teams can we construct from a class of 30 students?
In general, howmany groups ofK objects can be extracted from a group ofN objects?We call this the “number
of combinations”.

The extreme cases are easy. If K = 1, then there are N combinations (each individual student). If K =N,
then there is one combination (the entire class). The general answer can be found by noting that the number
of ordered groups is the number of permutations P(N,K). Each group of K can be ordered K!ways (since this
is the number of permutations of a group of K). Thus the number of unordered groups is P(N,K)/K!. We
have found the following theorem.

Theorem 1.10 The number of combinations of a group of N objects taken K at a time is
(
N
K

)
= N!

K! (N −K)! .

7Remember this when you (or a friend) asserts “I have nothing to wear!”
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The symbol
(
N
K

)
, in words “N choose K”, is a commonly used notation for combinations. They are also

known as thebinomial coefficients. The latter name is used because they are the coefficients from the binomial
expansion.

Theorem 1.11 Binomial Theorem. For any integer N ≥ 0,

(a+ b)N =
N∑

K=0

(
N
K

)
aKbN−K .

The proof of the binomial theorem is given in Section 1.15.
The permutation and combination rules introduced in this section are useful in certain counting appli-

cations but may not be necessary for a general understanding of probability. My view is that the tools should
be understood but not memorized. Instead, these tools can be looked up when needed.

1.12 SAMPLING WITH AND WITHOUT REPLACEMENT
Consider the problem of sampling from a finite set. For example, consider a $2 Powerball lottery ticket which
consists of five integers each between 1 and 69. If all five numbers match the winning numbers, the player
wins8 $1 million!

To calculate the probability of winning the lottery, we need to count the number of potential tickets. The
answer depends on two factors: (1) Can the numbers repeat? (2) Does the ordermatter? The number of tickets
could have four distinct values, depending on the two choices just described.

The first question, of whether a number can repeat or not, is called “sampling with replacement” versus
“sampling without replacement”. In the actual Powerball game, 69 ping-pong balls are numbered and put in a
rotating air machine with a small exit. As the balls bounce around, some of them find the exit. The first five
to exit are the winning numbers. In this setting, we have “sampling without replacement”, as once a ball exits,
it is no longer among the remaining balls. A consequence for the lottery is that a winning ticket cannot have
duplicate numbers. However, an alternative way to play the game would be to extract the first ball, replace it
in the chamber, and repeat. This would be “sampling with replacement”. In this game, a winning ticket could
have repeated numbers.

The second question, of whether the order matters, is the same as the distinction between permutations
and combinations as discussed in the previous section. In the case of the Powerball game, the balls emerge in
a specific order. However, this order is ignored for the purpose of determining a winning ticket. This is the
case of unordered sets. If the rules of the game were different, the order could matter. If so, we would use the
tools of ordered sets.

We now describe the four sampling problems. We want to find the number of groups of size K which can
be taken from N items, for example, the number of five integers taken from the set {1, . . . , 69}.

Ordered, with replacement. Consider selecting the items in sequence. The first item can be any of the N, the
second can be any of the N, the third can be any of the N, etc. So by the counting rule, the total number of
possible groups is

N ×N × · · · ×N =NK .

8There are also other prizes for other combinations.
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In the Powerball example, this is

695 = 1,564,031,359.

This is a very large number of potential tickets!

Ordered, without replacement. This is the number of permutations P(N,K)=N!/(N −K)! In the powerball
example, this number is

69!
(69− 5)! = 69!

64! = 69× 68× 67× 66× 65= 1,348,621,560.

This is nearly as large as the case with replacement.

Unordered, without replacement. This is the number of combinations N!/(K!(N −K)!). In the powerball
example, this number is

69!
5! (69− 5)! = 11,238,513.

This is a large number but considerably smaller than the cases of ordered sampling.

Unordered, with replacement. This computation is tricky. It is not NK (ordered with replacement) divided
by K!, because the number of orderings per group depends on whether there are repeats. The trick is to recast
the question as a different problem. It turns out that the number we are looking for is the same as the number
of N-tuples of nonnegative integers {x1, . . . , xN} whose sum is K. To see this, a lottery ticket (unordered with
replacement) can be represented by the number of “1’s” x1, the number of “2’s” x2, the number of “3’s” x3, and
so forth, and we know that the sum of these numbers (x1 + · · · + xN) must equal K. The solution has a clever
name based on the original proof notation.

Theorem 1.12 Stars and Bars Theorem. The number of N-tuples of nonnegative integers whose sum is K

is equal to
(
N +K − 1

K

)
.

The proof of the stars and bars theorem is omitted, as it is rather tedious. It does give us the answer to the
questionwe started to address, namely, the number of unordered sets takenwith replacement. In the Powerball
example, this is (

69+ 5− 1
5

)
= 73!

5!68! = 15,020,334.

Table 1.1 summarizes the four sampling results.

Table 1.1
Number of possible arrangments of size K from N items

Without Replacement With Replacement

Ordered
N!

(N −K)! NK

Unordered
(
N
K

) (
N +K − 1

K

)
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The actual Powerball game uses sampling that is unordered without replacement. Thus there are about
11 million potential tickets. As each ticket has an equal chance of occurring (if the random process is fair),
this means the probability of winning is about 1/11,000,000. Since a player wins $1 million once for every
11 million tickets sold, the expected payout (ignoring the other payouts) is about $0.09. This is a low payout
(considerably below a “fair” bet, given that a ticket costs $2) but is sufficiently high to attract meaningful
interest from players.

1.13 POKER HANDS
A fun application of probability theory is to the game of poker. Similar types of calculations can be useful in
economic examples involving multiple choices.

A standard game of poker is played with a 52-card deck containing 13 denominations {2, 3, 4, 5, 6, 7, 8,
9, 10, Jack, Queen, King, Ace} in each of four suits {club, diamond, heart, spade}. The deck is shuffled (so the
order is random) and a player is dealt9 five cards called a “hand”. Hands are ranked based on whether there are
multiple cards (pair, two pair, three-of-a-kind, full house, or four-of-a-kind), all five cards in sequence (called
a “straight”), or all five cards of the same suit (called a “flush”). Players win if they have the best hand.

We are interested in calculating the probability of receiving a winning hand.
The structure is unordered sampling without replacement. The number of possible poker hands is

(
52
5

)
= 52!

47!5! = 48× 49× 50× 51× 52
2× 3× 4× 5

= 48× 49× 5× 17× 13= 2, 598, 560.

Since the draws are symmetric and random, all hands have the same probability of receipt, implying that the
probability of receiving any specific hand is 1/2, 598, 560, an infinitesimally small number.

Another way of calculating this probability is as follows. Imagine picking a specific five-card hand. The
probability of receiving one of the five cards on the first draw is 5/52, the probability of receiving one of the
remaining four on the second draw is 4/51, the probability of receiving one of the remaining three on the third
draw is 3/50, etc., so the probability of receiving the five-card hand is

5× 4× 3× 2× 1
52× 51× 50× 49× 48

= 1
13× 17× 5× 49× 48

= 1
2, 598, 960

.

Oneway to calculate the probability of awinning hand is to enumerate and count the number ofwinning hands
in each category and then divide by the total number of hands, 2, 598, 560. Let us consider a few examples.

Four of a kind. Consider the number of hands with four of a specific denomination (such as Kings). The hand
contains all four Kings plus an additional card, which can be any of the remaining 48. Thus there are exactly
48 five-card hands with all four Kings. There are 13 denominations, so there are 13× 48= 624 hands with
four-of-a-kind. Thus the probability of drawing a four-of-a-kind is

13× 48
13× 17× 5× 49× 48

= 1
17× 5× 49

= 1
4165

	 0.0%.

9A typical game involves additional complications, which we ignore.
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Three of a kind. Consider the number of hands with three of a specific denomination (such as Aces). There

are
(
4
3

)
= 4 groups of three Aces. There are 48 cards fromwhich to choose the remaining two. The number of

such arrangements is
(
48
2

)
= 48!

46!2! = 47× 24. However, this includes pairs. There are twelve denominations

each of which has
(
4
2

)
= 6 pairs, so there are 12× 6= 72 pairs. Thus the number of two-card arrangements

excluding pairs is 47× 24− 72= 44× 24. Hence the number of hands with three Aces and no pair is 4× 44×
24. As there are 13 possible denominations, the number of hands with a three of a kind is 13× 4× 44× 24.
Thus the probability of drawing a three-of-a-kind is

13× 4× 44× 24
13× 17× 5× 49× 48

= 88
17× 5× 49

	 2.1%.

One pair. Consider the number of hands with two of a specific denomination (such as a “7”). There are
(
4
2

)
=

6 pairs of 7’s. From the 48 remaining cards, the number of three-card arrangements is
(
48
3

)
= 48!

45!3! = 23×
47× 16. However, this includes three-card groups and two-card pairs. There are twelve denominations. Each

has
(
4
3

)
= 4 three-card groups. Each also has

(
4
2

)
= 6 pairs and 44 remaining cards from which to select the

third card. Thus there are 12× (4+ 6× 44) three-card arrangements with either a three-card group or a pair.
Subtracting, we find that the number of hands with two 7’s and no other pairs is

6× (23× 47× 16− 12× (4+ 6× 44)) .

Multiplying by 13, the probability of drawing one pair of any denomination is

13× 6× (23× 47× 16− 12× (4+ 6× 44))
13× 17× 5× 49× 48

= 23× 47× 2− 3× (2+ 3× 44)
17× 5× 49

	 42%.

From these simple calculations, you can see that if you receive a random hand of five cards, you have a
good chance of receiving one pair, a small chance of receiving a three-of-a-kind, and a negligible chance of
receiving a four-of-a-kind.

1.14 SIGMA FIELDS*
Definition 1.2 is incomplete as stated. When there are an uncountable infinity of events, it is necessary to
restrict the set of allowable events to exclude pathological cases. This is a technicality which has little impact
on practical econometrics. However, the terminology is used frequently, so it is prudent to be aware of the
following definitions. The correct definition of probability is as follows.

Definition 1.5 A probability function P is a function from a sigma field B to the real line which satisfies
the axioms of probability.

The difference is that Definition 1.5 restricts the domain to a sigma fieldB. The latter is a collection of sets
which is closed under set operations. The restriction means that there are some events for which probability
is not defined.

A sigma field is defined as follows.
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Definition 1.6 A collection B of sets is called a sigma field if it satisfies the following three properties:

1. ∅ ∈B.
2. If A∈B, then Ac ∈B.

3. If A1,A2, . . .∈B, then
∞⋃
i=1

Ai ∈B.

The infinite union in part 3 includes all elements which are an element of Ai for some i. An example is
∞⋃
i=1

[0, 1− 1/i]= [0, 1).
An alternative label for a sigma field is “sigma algebra”. The following is a leading example of a sigma field.

Definition 1.7 The Borel sigma field is the smallest sigma field on R containing all open intervals (a, b). It
contains all open intervals and closed intervals, and their countable unions, intersections, and complements.

A sigma field can be generated from a finite collection of events by taking all unions, intersections, and
complements. Take the coin-flip example and start with the event {H}. Its complement is {T}, their union
is S={H,T}, and the union’s complement is {∅}. No further events can be generated. Thus the collection
{{∅}, {H}, {T}, S} is a sigma field.

For an example on the positive real line, take the sets [0, 1] and (1, 2]. Their intersection is {∅}, their
union is [0, 2], and their complements are (1,∞), [0, 1] ∪ (2,∞), and (2,∞). A further union is [0,∞). This
collection is a sigma field, as no further events can be generated.

When there are an infinite number of events, then it may not be possible to generate a sigma field through
set operations, as pathological counterexamples exist. These counterexamples are difficult to characterize,
are nonintuitive, and seem to have no practical implications for econometric practice. Therefore the issue
is generally ignored in econometrics.

If the concept of a sigma field seems technical, it is! The concept is not used further in this textbook.

1.15 TECHNICAL PROOFS*
Proof of Theorem 1.1 Take an outcome ω in A. Since {B1,B2, · · · } is a partition of S, it follows that ω∈Bi
for some i. Set Ai = (A∩Bi). Thus ω∈ Ai ⊂⋃∞

i=1 Ai. This shows that every element in A is an element of⋃∞
i=1 Ai.
Now take an outcome ω in

⋃∞
i=1 Ai. Thus ω∈ Ai for some i. This implies ω∈ A. This shows that every

element in
⋃∞

i=1 Ai is an element of A.
For i �= j, Ai ∩Aj = (A∩Bi)∩

(
A∩Bj

)=A∩ (Bi ∩Bj
)= ∅ since Bi are mutually disjoint. Thus Ai are

mutually disjoint. �

Proof of Theorem 1.2 property 1 A andAc are disjoint andA∪Ac = S. The second and third axioms imply

1= P [S]= P [A]+ P

[
Ac] . (1.1)

Rearranging, we find P [Ac]= 1− P [A] as claimed. �

Proof of Theorem1.2 property 2 Wehave that∅ = Sc. By Theorem 1.2 and the second axiomof probability,
P [∅]= 1− P [S]= 0, as claimed. �
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Proof of Theorem 1.2 property 3 The first axiom implies P [Ac]≥ 0. This and equation (1.1) imply

P [A]= 1− P

[
Ac]≤ 1

as claimed. �

Proof of Theorem 1.2 property 4 The assumption A⊂B implies A∩B=A. By the partitioning theorem
(Theorem1.1)B= (B∩A)∪ (B∩Ac)=A∪ (B∩Ac)whereA andB∩Ac are disjoint. The third axiom implies

P [B]= P [A]+ P

[
B∩Ac]≥ P [A]

where the inequality is P [B∩Ac]≥ 0 which holds by the first axiom. Thus, P [B]≥ P [A], as claimed. �

Proof of Theorem 1.2 property 5 {A∪B} =A∪ {B∩Ac} where A and {B∩Ac} are disjoint. Also
B={B∩A} ∪ {B∩Ac} where {B∩A} and {B∩Ac} are disjoint. These two relationships and the third axiom
imply

P [A∪B]= P [A]+ P

[
B∩Ac]

P [B]= P [B∩A]+ P

[
B∩Ac] .

Subtracting,
P [A∪B]− P [B]= P [A]− P [B∩A] .

Rearranging, we obtain the result. �

Proof of Theorem 1.2 property 6 From the Inclusion-Exclusion Principle and P [A∩B]≥ 0 (the first
axiom)

P [A∪B]= P [A]+ P [B]− P [A∩B]≤ P [A]+ P [B]
as claimed. �

Proof of Theorem 1.2 property 7 Rearranging the Inclusion-Exclusion Principle and using P [A∪B]≤ 1
(Theorem 1.2 property 3), we have

P [A∩B]= P [A]+ P [B]− P [A∪B]≥ P [A]+ P [B]− 1

which is the stated result. �

Proof of Theorem 1.11 (Binomial Theorem) Multiplying out, the expression

(a+ b)N = (a+ b)× · · · × (a+ b) (1.2)

is a polynomial in a and b with 2N terms. Each term takes the form of the product of K of the a and N −K of
the b, thus is of the form aKbN−K . The number of terms of this form is equal to the number of combinations
of the a’s, which is

(N
K
)
. Consequently, expression (1.2) equals

∑N
K=0

(N
K
)
aKbN−K , as stated. �

1.16 EXERCISES
Exercise 1.1 Let A={a, b, c, d} and B={a, c, e, f }.

(a) Find A∩B.
(b) Find A∪B.
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Exercise 1.2 Describe the sample space S for the following experiments.

(a) Flip a coin.
(b) Roll a six-sided die.
(c) Roll two six-sided dice.
(d) Shoot six free throws (in basketball).

Exercise 1.3 From a 52-card deck of playing cards, draw five cards to make a hand.

(a) Let A be the event “The hand has two Kings”. Describe Ac.
(b) A straight is five cards in sequence, for example, {5, 6, 7, 8, 9}. A flush is five cards of the same suit.

Let A be the event “The hand is a straight” and B be the event “The hand is 3-of-a-kind”. Are A and
B disjoint or not disjoint?

(c) LetA be the event “The hand is a straight” and B be the event “The hand is flush”. AreA and B disjoint
or not disjoint?

Exercise 1.4 For events A and B, express the probability of “either A or B but not both” as a formula in terms
of P [A], P [B], and P [A∩B].

Exercise 1.5 If P [A]= 1/2 and P [B]= 2/3, can A and B be disjoint? Explain.

Exercise 1.6 Prove that P [A∪B]= P [A]+ P [B]− P [A∩B].

Exercise 1.7 Show that P [A∩B]≤ P [A]≤ P [A∪B]≤ P [A]+ P [B].

Exercise 1.8 Suppose A∩B=A. Can A and B be independent? If so, give the appropriate condition.

Exercise 1.9 Prove that

P [A∩B∩C]= P [A |B∩C]P [B |C]P [C] .

Assume P [C]> 0 and P [B∩C]> 0.

Exercise 1.10 Is P [A |B]≤ P [A], P [A |B]≥ P [A], or is neither necessarily true?

Exercise 1.11 Give an example where P [A]> 0, yet P [A |B]= 0.

Exercise 1.12 Calculate the following probabilities concerning a standard 52-card playing deck.

(a) Drawing a King with one card.
(b) Drawing a King on the second card, conditional on a King on the first card.
(c) Drawing two Kings with two cards.
(d) Drawing a King on the second card, conditional on the first card is not a King.
(e) Drawing a King on the second card, when the first card is placed face down (so is unknown).
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Exercise 1.13 You are on a game show, and the host shows you five doors marked A, B, C, D, and E. The
host says that a prize is behind one of the doors, and you win the prize if you select the correct door. Given the
stated information, what probability distribution would you use for modeling the distribution of the correct
door?

Exercise 1.14 Calculate the following probabilities, assuming fair coins and dice.

(a) Getting three heads in a row from three coin flips.
(b) Getting a heads given that the previous coin was a tails.
(c) From two coin flips getting two heads given that at least one coin is a heads.
(d) Rolling a six from a pair of dice.
(e) Rolling “snakes eyes” from a pair of dice. (Getting a pair of ones.)

Exercise 1.15 If four random cards are dealt from a deck of playing cards, what is the probability that all
four are Aces?

Exercise 1.16 Suppose that the unconditional probability of a disease is 0.0025. A screening test for this
disease has a detection rate of 0.9, and has a false positive rate of 0.01. Given that the screening test returns
positive, what is the conditional probability of having the disease?

Exercise 1.17 Suppose that 1% of athletes use banned steroids. Suppose that a drug test has a detection rate
of 40% and a false positive rate of 1%. If an athlete tests positive, what is the conditional probability that the
athlete has taken banned steroids?

Exercise 1.18 Sometimes we use the concept of conditional independence. The definition is as follows.
Let A,B,C be three events with positive probabilities. Then A and B are conditionally independent given C
if P [A∩B |C]= P [A |C]P [B |C]. Consider the experiment of tossing two dice. Let A={First die is 6}, B=
{Second die is 6}, and C={Both dice are the same}. Show that A and B are independent (unconditionally),
but A and B are dependent given C.

Exercise 1.19 Monte Hall. This is a famous (and surprisingly difficult) problem based on an old U.S. tele-
vision game show “Let’s Make a Deal” hosted by Monte Hall. A standard part of the show ran as follows: A
contestant was asked to select from one of three identical doors: A, B, and C. Behind one of the three doors
was a prize. If the contestant selected the correct door, they would receive the prize. The contestant picked
one door (say, A) but it is not immediately opened. To increase the drama, the host opened one of the two
remaining doors (say, door B) revealing that that door does not have the prize. The host then made the offer:
“You have the option to switch your choice” (e.g., to switch to door C). You can imagine that the contes-
tant may have made one of reasonings (a)–(c) below. Comment on each of these three reasonings. Are they
correct?

(a) “When I selected door A, the probability that it has the prize was 1/3. No information was revealed.
So the probability that Door A has the prize remains 1/3.”

(b) “The original probability was 1/3 on each door. Now that door B is eliminated, doors A and C each
have each probability of 1/2. It does not matter whether I stay with A or switch to C.”
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(c) “The host inadvertently revealed information. If door C had the prize, he was forced to open door B.
If door B had the prize, he would have been forced to open door C. Thus it is quite likely that door C
has the prize.”

(d) Assume a prior probability for each door of 1/3. Calculate the posterior probabilities that door A and
door C have the prize, respectively. What choice do you recommend for the contestant?

Exercise 1.20 In the game of blackjack, you are dealt two cards from a standard playing deck. Your score
is the sum of the value of the two cards, where numbered cards have the value given by their number, face
cards (Jack, Queen, King) each receive 10 points, and an Ace either 1 or 11 (player can choose). A blackjack
is receiving a score of 21 from two cards, thus an Ace and any card worth 10 points.

(a) What is the probability of receiving a blackjack?
(b) The dealer is dealt one of their cards face down and one face up. Suppose the “show” card is an Ace.

What is the probability that the dealer has a blackjack? (For simplicity, assume you have not seen any
other cards.)

Exercise 1.21 Consider drawing five cards at random from a standard deck of playing cards. Calculate the
following probabilities.

(a) A straight (five cards in sequence, suit not relevant).
(b) A flush (five cards of the same suit, order not relevant).
(c) A full house (3-of-a-kind and a pair, e.g., three Kings and two “3’s”).

Exercise 1.22 In the poker game “Five Card Draw”, a player first receives five cards drawn at random. The
player decides to discard some of their cards and then receives replacement cards. Assume a player is dealt
a hand with one pair and three unrelated cards and decides to discard the three unrelated cards to obtain
replacements. Calculate the following conditional probabilities for the resulting hand after the replacements
are made.

(a) Obtaining a four-of-a-kind.
(b) Obtaining a three-of-a-kind.
(c) Obtaining two pairs.
(d) Obtaining a straight or a flush.
(e) Ending with one pair.
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absolutely convergent series, 367
acceptance and rejection, hypothesis testing, 272–274
across group variance, 97
almost sure convergence, 159
alternative hypothesis, 270–271
analog principle, 131
asymptotic confidence interval, 294
asymptotic coverage probability of interval estimator, 294
asymptotic Cramér-Rao efficiency, 211
asymptotic distribution: Bayesian analysis, 328–329; kernel den-
sity estimator, 347; for moment equations, 238–239; for plug-in
estimators, 172

asymptotic equicontinuity, 360–362
asymptotic integrated mean squared error (AIMSE), 340–341
asymptotic limits, 149–150
asymptotic normality, maximum likelihood estimation (MLE),
209–211

asymptotic theory, advanced: convergence of moments in, 182–
183; Cornish-Fisher expansions in, 187–188; Edgeworth
expansion for smooth function model in, 185–187; Edgeworth
expansion for the sample mean in, 183–185; heterogeneous
central limit theory in, 178–179; multivariate heterogeneous
central limit theory in, 180; uniform central limit theory in,
180–181; uniform integrability in, 181–182; uniform stochastic
bounds in, 182

asymptotic t test, 281–282
asymptotic uniform confidence interval, 299
asymptotic uniform coverage probability of interval estimator,
299

asymptotic uniformity, 290
axioms of probability, 2–4; properties of probability function
derived from, 4–5

backtracking algorithm, 256
bandwidth, kernel density estimator: parameters in, 334–335; rec-
ommendations for selection of, 344–346; reference bandwidths
for, 341–343; Sheather-Jones, 343–344

Bayes estimator, 315–316
Bayesian methods: asymptotic distribution in, 328–329; Bayes
estimator in, 315–316; Bayesian hypothesis testing in, 326–
327; Bayesian probability model in, 314–315; Bernoulli
sampling in, 319–320; conjugate prior in, 318–319; credible
sets in, 324–326; normal-gamma distribution in, 317–318;
normal sampling in, 321–324; posterior density in, 315;

priors in, 316–317; sampling properties in normal model,
327–328

Bayesian probability model, 314–315
Bayes Risk, 316
Bayes Rule, 10–11
Bayes theorem for densities, 88–89
Bernoulli distribution, 56
Bernoulli random variable, 40–41
Bernoulli sampling, 319–320
Bernstein-von Mises theorem, 328
best linear unbiased estimator (BLUE), 138
best unbiased estimation, 138, 231–233
beta-binomial model, 107
beta distribution, 65–66
BFGS (Broyden-Fletcher-Goldfarb-Shanno), 262–264
bias, estimation, 135–136
bias-corrected variance estimator, 139–140
binomial coefficients, 13
binomial distribution, 57
binomial-Poisson model, 106–107
Binomial theorem, 13
bisection method, 253–254
bivariate distribution functions, 74–77
bivariate expectation, 81–83
bivariate random variables, 74
biweight kernel function, 333–334
Bonferroni’s inequality, 4
Boole’s inequality, 4
Borel sigma field, 17
bracketing number, 357–358, 365–366

Cauchy criterion, 367
Cauchy distribution, 39, 62
Cauchy-Schwarz inequality, 92–93
censored distributions, 47; normal, 116–117
center of mass, 25–26
central limit theorem (CLT), 149; application of, 169; asymp-

totic distribution for plug-in estimator in, 172; convergence in
distribution in, 165–166; convergence of moment generating
function in, 167–168; covariance matrix estimation in, 172;
delta method in, 170–172; Edgeworth expansion for smooth
function model in, 185–187; Edgeworth expansion for the
sample mean in, 183–185; examples of, 171–172; functional,
359–361, 362–364; heterogeneous, 178–179; Lindberg-Lévy,

379
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central limit theorem (cont.)
168–169; moments in, 167; multivariate, 170; multivariate
heterogeneous, 180; sample mean, 166; stochastic order
symbols in, 173–174; t-ratios, 173

central moments, 41, 230–231
chain rule of differentiation, 370
characteristic function, 51
Chebyshev’s inequality, 152
chi-square distribution, 63–64
coin flips: equally likely outcomes with, 5; joint probabilities in, 8;
outcomes of, 1–2

combinations, 11–13
comparison test, 367
concave functions, 42–43
conditional densities, visualizing, 86–87
conditional distribution for continuous X, 85–86
conditional distribution for discrete X, 83–85
conditional expectation, 93–95; existence and uniqueness of, 108;
identification of, 109

conditional mean, 93
conditional probability, 6–7; Bayes Rule, 10–11
conditional variance, 96–98
confidence intervals: definitions in, 293–294; for estimated
parameters, 296; interpretation of, 298–299; narrow, 299; for
sample mean under non-normal sampling, 295; for sample
mean under normal sampling, 294–295; simple, 294; by test
inversion, 297–298; uniform, 299; use of, 298–299; for the
variance, 296

conjugate gradient, 260
conjugate prior, 318–319
constrained optimization, 266–267
continuous mapping theorem (CMT), 149, 155–157,
170–171

continuous random variables, 29–30; expectation of, 37–38;
transformations of, 33–35

continuous X, conditional distribution for, 85–86
convergence: almost sure, 159–160; in distribution, 165–166;
moment generating function, 167–168; of moments,
182–183; in probability, 150–151, 353–354; tests for,
367–368

convergent series, 367
convex functions, 42–43
convolutions, 104–105
Cornish-Fisher expansions, 187–188
correlation, 90–92
counting rule, 12
covariance, 90–92; matrix estimation, 172
coverage probability of interval estimator, 293
Cramér-Rao lower bound, 206, 306; examples of, 206–208; for
functions of parameters, 208

Cramér-Wold device, 170
credible sets, Bayesian analysis, 324–326
cross moment, 91–92
cumulants, 50–51; normal, 114
cumulative distribution function (CDF), 28–29

data generating process, 128–129
deciles, 30

degenerate random variables, 39
delta method, 170–172
density functions, random variables, 31–33
dependent events, 8
derivative rule of differentiation, 370
dice rolls: conditional probabilities in, 9; outcomes of, 3
differentiation, 369–370
digamma function, 251
discrete derivative, 251
discrete Jensen’s inequality, 43
discrete random variables, 22–24, 77–78
discrete X, conditional distribution for, 83–85
distributions, 28–29; Bayesian asymptotic, 328–329; Bernoulli,

56; beta, 65–66; binomial, 57; bivariate random variables,
74–77; Cauchy, 39, 61, 119; censored, 47; chi-square, 63–64,
119; conditional distribution for continuous X, 85–86; con-
ditional distribution for discrete X, 83–85; convergence in,
165–166; double exponential, 60; extreme value, 67–68; F,
64–65, 119; Gamma, 64; generalized exponential, 60–61; hier-
archical, 105–108; kernel density estimator asymptotic, 347;
logistic, 63; lognormal, 66–67; marginal, 80–81; of MLE under
misspecification, 215–216; moments (seemoments); multi-
nomial, 58; negative binomial, 59; non-central chi-square, 65;
normal-gamma, 317–318; Pareto, 66; quantiles, 30–31; sam-
pling, 134–135; skewness, 32–33; student t, 62; symmetric, 45;
t, 119; truncated, 45–47; univariate normal, 113–114; Weibull,
67; Wishart, 146

dominated convergence theorem, 373
Donsker’s theorem, 362–364
double exponential distribution, 60
double factorial, 368–369

Edgeworth expansion: for the sample mean, 183–185; for smooth
function model, 185–187

efficient score, 203
empirical distribution function (EDF), 241–242
empirical process theory: asymptotic equicontinuity, 360–

362; Donsker’s theorem, 362–364; framework of, 352–353;
functional central limit theory, 359–361; Glivenko-Cantelli
theorem, 353–354; packing, covering, and bracketing
numbers in, 354–358; uniform law of large numbers,
358–359

envelope function, 355
Epanechnikov kernel function, 333–334
equally likely outcomes, 5
estimated parameters, confidence intervals for, 296
estimation: Bayesian, 315–316; best unbiased, 138, 231–233;

covariance matrix, 172; histogram density, 332–333; normal
variance, 145; shrinkage (see shrinkage estimation); variance,
136–137, 139–140, 211–213

estimation bias, 135–136
estimators, 130–131; bias of density, 336–338; interval, 293–

294, 299; kernel density (see kernel density estimator); kernel
smoothing, 332; plug-in, 133–134, 172

Euclidean norm, 100
Euler equation, 239–241
events, 1–2; dependent, 8; independent, 7–9; joint, 5–6; sigma

field, 17; trivial, 5
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expectation, 25–26; bivariate, 81–83; conditional, 93–95, 108;
continuous random variables, 37–38; existence and uniqueness
of conditional, 108; finiteness of, 26–27, 38–39; law of iterated
expectations, 95–96

expectation inequality, 43
expected Hessian, 204
expected Hessian estimator, 212
expected log density, 196
exponential distribution, 59
exponentials, 369
extreme value distribution, 67–68

factorials, 368–369
fair coin flip, 5
Fatou’s lemma, 373
F distribution, 64–65
finiteness of expectations, 26–27, 38–39
first fundamental theorem of calculus, 372
Fisher information, 203
four of a kind poker hand, 15
Fubini’s theorem, 373
functional central limit theory (CLT), 359–361; Donsker’s
theorem, 362–364

gamma distribution, 64
gamma function, 374
Gaussian integral, 373–374
Gaussian kernel function, 333–334
generalized exponential distribution, 60–61
geometric mean inequality, 43–44
Glivenko-Cantelli theorem, 353–354
golden-section search, 256–257
gradient, 250
gradient descent, 260
Greek alphabet, xxiii
grid search, numerical optimization, 252–253, 255,
259

Gumbel distribution, 67–68

Hermite polynomials, 119–120
Hessian, 202–206, 250, 261–262
hierarchical distributions, 105–108
higher moments of sample mean, 142–144
histogram density estimation, 332–333
Hölder’s inequality, 98–99
hypothesis testing: acceptance and rejection regions, 272–
274; asymptotic t test, 281–282; asymptotic uniformity,
290; Bayesian, 326–327; composite null hypothesis, 288–
289; likelihood ratio and t tests, 285–286; likelihood ratio
test against composite alternatives, 284–285; likelihood
ratio test for simple hypotheses, 282–283; Neyman-Pearson
lemma, 283–284; one-sided tests, 275–277; power func-
tion, 275; p-value, 287–288; statistical significance, 286–287;
t test with normal sampling, 280–281; two-sided tests,
277–278; type I and type II errors, 274–275; types of
hypotheses in, 270–272; what does “Accept H0” mean,
278–280

hypothesized value, 270

identification, multivariate distributions, 108–109
Inclusion-Exclusion Principle, 4
independence between random variables, 87–90
independent events, 7–9
information matrix equality, 204
integral, Gaussian, 373–374
integral test, 368
integrated mean squared error of density estimator, 339–340
integration, 372–373
interval estimator, 293–294, 299
invariance property, 197
inverse Mills ratio, 116

James-Stein shrinkage estimator, 304–308; positive-part
estimator, 306–307

Jensen’s inequality, 42–43; applications of, 43–44
joint density, 78; Bayesian analysis, 314–315; visualizing

conditional densities, 86–87
joint distribution: covariance and correlation in, 90–92; law of

iterated expectations and, 95–96
joint events, 5–6
joint probability mass function, 77–78

kernel density estimator, 333–336; asymptotic distribution, 347;
bias of, 336–338; computation of, 346–347; optimal ker-
nel, 340–341; practical issues with, 346; recommendations
for bandwidth selection, 344–346; reference bandwidth for,
341–343; undersmoothing, 347–348; variance estimation and
standard errors, 339; variance of, 338–339

kernel functions, 333–336
kernel smoothing estimators, 332
Kronecker lemma, 368
Kullback-Leibler divergence, 213–214

Laplace random variable, 60
law of iterated expectations, 95–96
law of large numbers: asymptotic limits and, 149–150; Cheby-

shev’s inequality and, 152, 154–155; continuous mapping
theorem (CMT) and, 149, 155–157; convergence in proba-
bility and, 150–151; strong law of large numbers (SLLN) and,
159–160; uniformity over distributions and, 157–159; uniform
law of large number (ULLN) and, 358–359; weak law of large
numbers (WLLN) and, 149, 153–154, 157–159

law of total probability, 10
Legendre’s duplication formula, 374
Leibniz rule, 373
L’Hôpital’s rule, 370
likelihood analog principle, 196–197
likelihood function, 193–196
likelihood Hessian, 203
likelihood ratio test, 285–286; against composite alternatives,

284–285; for simple hypotheses, 282–283
likelihood score, 202
limits, 367
Lindeberg central limit theorem, 178–179; multivariate, 180
Lindeberg-Lévy central limit theorem, 168–169; multivariate,

170; uniform, 180–181
Lindeberg’s condition, 178
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linearity: of differentiation, 370; of expectation, 26; of integration,
372

line search, 255
Loève’s cr inequality, 44
logarithms, 369
logistic distribution, 63
log-likelihood function, 195–196, 202
lognormal distribution, 66–67
Lr distance, 355
Lyapunov’s condition, 179
Lyapunov’s inequality, 43

Maclaurin series expansion, 371
Mann-Wald theorem, 170–171
marginal densities, 80–81
marginal distribution, 80–81
marginal likelihood, 315
Markov’s inequality, 152
mathematics reference: differentiation, 369–370; exponentials,
369; factorials, 368–369; gamma function, 374; Gaussian inte-
gral, 373–374; integration, 372–373; limits, 367; logarithms,
369; matrix algebra, 374–376; mean value theorem, 371; series,
367–368

matrix algebra, 374–376
maximum likelihood estimation (MLE): approximating models
and, 214–215; asymptotic Cramér-Rao efficiency and, 211;
asymptotic normality and, 209–211; consistent estimation and,
208–209; Cramér-Rao lower bound and, 206–208; distribution
under misspecification and, 215–216; examples of, 197–202;
invariance property and, 197; Kullback-Leibler divergence and,
213–214; likelihood analog principle and, 196–197; likelihood
function and, 193–196; parametric model and, 192–193; score,
Hessian, and information in, 202–204; variance estimation
and, 211–213; variance estimation under misspecification and,
216–217

mean, 39–41; conditional, 93; confidence intervals for sample
under non-normal sampling and, 295; confidence intervals
for sample under normal sampling and, 294–295; Edgeworth
expansion for the sample and, 183–185; higher moments of
sample and, 142–144; multivariate, 140–141, 225–226; sample,
131–132

mean squared error (MSE), 137–138; density estimator and, 339–
340; James-Stein shrinkage estimator and, 304–305; shrinkage
estimation and, 302–303

mean value theorem, 371
method of moments: best unbiased estimation and, 231–233;
empirical distribution function (EDF) and, 241–242; moment
equations and, 237–241; moments distribution and, 226–227;
multivariate means and, 225–226; parametric models and,
234–237; robust variance estimation and, 245; sample quan-
tiles and, 242–244; smooth functions and, 227–230. See also
moments

minimization: failures of, 258–259; in multiple dimensions,
259–266; nested, 267–268; in one dimension, 254–258

Minkowski’s inequality, 98–99
mixtures: of normals, 68–69, 107–108; variance, 107
mode, distribution, 32

moment generating function (MGF), 47–49; convergence of,
167–168

moments, 41, 226–227; censored normal distribution, 117;
central, 41, 230–231; central limit theorem (CLT), 167; con-
vergence of, 182–183; higher, 142–144; normal, 114; truncated
normal distribution, 116–117; vector-valued, 155. See also
method of moments

monotone convergence theorem, 373
monotone probability inequality, 4
multinomial distribution, 58
multivariate central limit theorem, 170
multivariate distributions: bivariate distribution functions, 74–77;

bivariate expectation, 81–83; bivariate random variables, 74;
Cauchy-Schwarz inequality, 92–93; conditional distribution for
continuous X, 85–86; conditional distribution for discrete X,
83–85; conditional expectation, 93–95; conditional variance,
96–98; convolutions, 104–105; covariance and correlation, 90–
92; existence and uniqueness of conditional expectation, 108;
hierarchical distributions, 105–108; Hölder’s and Minkowski’s
inequalities, 98–99; identification, 108–109; independence
between random variables, 87–90; law of iterated expectations,
95–96; marginal distribution, 80–81; multivariate transforma-
tions, 104; normal, 117–118; pairs of multivariate vectors, 103;
probability density function, 78–79; probability mass function,
77–78; properties of, 118–119; triangle inequalities, 100–101;
vector notation, 99–100; visualizing conditional densities,
86–87

multivariate heterogeneous central limit theory, 180
multivariate means, 140–141, 225–226
multivariate normal sampling, 146
multivariate random vectors, 101–103
multivariate standard normal distribution, 117–118
multivariate transformations, 104
multivariate vectors: pairs of, 103; random, 101–103

negative binomial distribution, 59
Nelder-Mead method, 264–266
nested minimization, 267–268
Newton’s method, 253, 255–256, 260–262
Neyman-Pearson lemma, 283–284
non-central chi-square distribution, 65
non-centrality parameter, 65
non-monotonic transformations, 35–36
non-normal sampling, confidence intervals for sample mean

under, 295
nonparametric density estimation: asymptotic distribution, 347;

bias of density estimator, 336–338; computation, 346–347; his-
togram density estimation, 332–333; integrated mean squared
error of density estimator, 339–340; kernel density estimator,
333–336; optimal kernel, 340–341; practical issues in, 346; rec-
ommendations for bandwidth selection, 344–346; reference
bandwidth for, 341–343; Sheather-Jones bandwidth, 343–344;
undersmoothing, 347–348; variance estimation and standard
errors, 339; variance of density estimator, 338–339

normal cumulants, 114
normal distribution, 61; Hermite polynomials, 119–120;

moments of, 114; multivariate, 117–118; normal cumulants,
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114; normal quantiles, 114–115; truncated and censored,
116–117; univariate, 113–114

normal-gamma distribution, 317–318
normal mixtures, 68–69, 107–108
normal quantiles, 114–115
normal residuals, 144–145
normal sampling model, 144; Bayesian methods and, 321–324;
confidence intervals for sample mean under, 294–295

normal variance estimation, 145
norm monotonicity, 44
notation, xxi–xxiii; common symbols, xxv–xxvi; Greek alphabet,
xxiii; vector, 99–100

null hypothesis, 270–271; composite, 288–289
numerical derivative, 251
numerical optimization: constrained optimization, 266–267;
failures of minimization, 258–259; minimization in multi-
ple dimensions, 259–266; minimization in one dimension,
254–258; nested minimization, 267–268; numerical function
evaluation and differentiation, 249–252; root finding, 252–254;
tips and tricks, 268–269

objectivist approach in Bayesian analysis, 314
one pair poker hand, 16
one-sided tests, 275–277
optimal kernel, 340–341
ordered sampling: with replacement, 13; without replacement, 14
order statistics, 141–142
outcomes, 1–2; equally likely, 5

packing number, 355–357
parameters, 130–131; confidence intervals for estimated, 296;
functions of, 133–134

parameter space, 56, 192
parametric distributions: Bernoulli distribution, 56; beta distri-
bution, 65–66; binomial distribution, 57; Cauchy distribution,
62; chi-square, 63–64; double exponential distribution, 60;
exponential distribution, 59–60; extreme value distribu-
tion, 67–68; F distribution, 64–65; Gamma distribution, 64;
generalized exponential distribution, 60–61; logistic, 63;
lognormal distribution, 66–67; mixture of normals, 68–69;
multinomial distribution, 58; negative binomial distribution,
59; non-central chi-square distribution, 65; normal distribu-
tion, 61; Pareto distribution, 66; Poisson distribution, 58–59;
Rademacher distribution, 57; uniform distribution, 59; Weibull
distribution, 67

parametric family, 192
parametric models, method of moments, 234–237. See also
maximum likelihood estimation (MLE)

Pareto distribution, 66
partial derivative, 370
partitioning theorem, 2; law of total probability and, 10
parts, integration by, 372–373
percentiles, distribution, 30
permutations, 11–13
plug-in estimators, 133–134; asymptotic distribution for, 172
point estimators, 131
pointwise convergence in probability, 353

Poisson distribution, 58–59
poker hands, 15–16
population distribution, 128
positive-part estimator, 306–307
posterior density, Bayes Rule on, 315
Powerball game, 13–15
power function, hypothesis testing, 275
priors, Bayesian, 316–317
probability density function (PDF), 31–33, 78–79
probability function, 2–4; convergence, 150–151, 353–354;

properties of, 4–5; sigma fields, 16–17
probability integral transformation, 35
probability mass function, 23, 26–27, 77–78
probability model, Bayesian, 314–315
probability theory: Bayes Rule, 10–11; conditional, 6–7; equally

likely outcomes, 5; independence, 7–9; joint events, 5–6; law
of total, 10; outcomes and events, 1–2; permutations and
combinations, 11–13; poker hands, 15–16

pseudo-true parameter, 214–215
p-value, 287–288

quantiles, 30–31; method of moments, 242–244; normal, 114–115
quartiles, 30

Rademacher distribution, 57
random samples, 128–129
random variables: Bernoulli distribution, 56; binomial distri-

bution, 57; bivariate, 74; Cauchy-Schwarz inequality, 92–93;
censored distribution, 47; characteristic function, 51; con-
ditional distribution for continuous X, 85–86; conditional
distribution for discrete X, 83–85; continuous, 29–30, 33–35,
37–38; convergence in probability, 150–151; covariance matrix
estimation, 172; cumulants, 50–51; defined, 22; density func-
tion, 31–33; discrete, 22–24, 77–78; distribution function,
28–29; expectation, 25–27, 37–38, 51–52; exponential distri-
bution, 29, 59–60; finiteness of expectations, 26–27, 38–39;
hierarchical distributions, 105–108; Hölder’s and Minkowski’s
inequalities, 98–99; independence between, 87–90; Jensen’s
inequality, 42–44; lognormal distribution, 66–67; mean and
variance, 39–41; moment generating function (MGF), 47–49;
moments, 41; multinomial distribution, 58; non-monotonic
transformation, 35–36; normal distribution, 61; Pareto dis-
tribution, 66; Poisson distribution, 58–59; quantiles, 30–31;
Rademacher, 57; stochastic order symbols, 173–174; symmetric
distribution, 45; transformations, 24–25, 33–36; t-ratios, 173;
truncated distribution, 45–47; uniform distribution, 29, 59;
unifying notation, 39; Weibull distribution, 67

ratio test, 368
real numbers, xxi
rectangular kernel function, 333–334
reference bandwidth, 341–343
replacement, sampling with and without, 13–15
residuals, normal, 144–145
Riemann integral, 372
Riemann-Stieltijes integration, 39, 51–52, 372–373
robust variance estimation, 245
root finding, 252–254
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sample Hessian estimator, 212
sample mean, 131–132, 166; studentized ratio, 146
samples, 128–130
sample size, 129
sample space, 1–2, 6
sampling: Bayesian analysis normal, 321–324; Bernoulli, 319–
320; best unbiased estimator, 138; confidence intervals for
sample mean under non-normal, 295; confidence intervals for
sample mean under normal, 294–295; empirical illustration,
130; estimation bias, 135–136; estimation of variance, 139–140;
estimation variance, 136–137; expected value of transforma-
tions, 132–133; higher moments of sample mean, 142–144;
mean squared error (MSE), 137–138; multivariate means,
140–141; multivariate normal, 146; normal residuals, 144–145;
normal sampling model, 144; normal variance estimation,
145; order statistics, 141–142; properties in normal Bayesian
model, 327–328; samples, 128–130; standard error, 140; statis-
tics, parameters, and estimators, 130–131; t test with normal,
280–281; with and without replacement, 13–15

sampling distribution, 134–135
scalars, xxi, 374
scaled student t random variable, 62
Schwarz inequality, 101
second fundamental theorem of calculus, 372
series, 367–368
Sheather-Jones bandwidth, 343–344
shrinkage approach in Bayesian analysis, 314
shrinkage estimation: interpretation of Stein effect, 306;
James-Stein shrinkage estimator, 304–305; mean squared
error (MSE) and, 302–303; positive-part estimator,
306–307

sigma fields, 16–17
Silverman’s Rule-of-Thumb, 342–343
simple confidence intervals, 294
skewness, 32–33
smooth functions, 227–230
standard deviation (sd), 40
standard error, 140; kernel density estimator, 339
standard normal density function, 61
standard normal distribution, 113–114
Stars and Bars theorem, 14–15
statistically independent events, 7–8
statistical significance, hypothesis testing, 286–287
statistics, 130–131; order, 141–142
steepest descent, 260
Stein-Rule shrinkage estimators. See shrinkage
estimation

Stein’s lemma, 305
step-length, 256, 261
Stirling’s approximation, 374
stochastic equicontinuity, 360
stochastic order symbols, 173–174
St. Petersburg paradox, 26–27
strong convergence, 159
strong law of large numbers (SLLN), 159–160
studentized ratio, 146
student t distribution, 61

subjectivist approach in Bayesian analysis, 314
summation notation, 367
support, discrete random variable, 23
symmetric distributions, 45

Taylor’s theorem, 371
t distributions, 119
test inversion, confidence intervals by, 297–298
tests for convergence, 367–368
theorem of Cesaro means, 368
three of a kind poker hand, 16
Toplitz lemma, 368
transformations, 24–25; continuous random variables,

33–35; Cramér-Rao lower bound for, 208; expected
value of, 132–133; multivariate, 104; non-monotonic,
35–36

transpose, 99
t-ratios, 173; Edgeworth expansion for smooth function model,

185–187
triangle inequalities, 100–101
triangular kernel function, 333–334
trigamma function, 251
trivial events, 5
true parameter value, 193
truncated distributions, 45–47; normal, 116–117
t-statistic, 146
t test, 285–286; with normal sampling, 280–281
tuning parameter, kernel density estimator, 334–335
two-sided tests, hypothesis testing, 277–278
type I errors, 274–275
type I extreme value distribution, 67–68
type II errors, 274–275

unconditional probability, 6–7
undersmoothing, 347–348
uniform central limit theory, 180–181
uniform confidence intervals, 299
uniform convergence, Glivenko-Cantelli theorem,

353–354
uniform coverage probability of interval estimator, 299
uniform distribution, 59
uniform integrability, 181–182
uniform law of large numbers (ULLN), 358–359
uniform stochastic bounds, 182
unifying notation, 39
univariate normal distribution, 113–114
unordered sampling: with replacement, 14; without replace-

ment, 14

variance, 39–41; conditional, 96–98; confidence intervals for the,
296; density estimator, 338–339; estimation, 136–137, 139–
140, 211–213; robust, 245; estimation under misspecification,
216–217; mixtures, 107

vectors, xxi, 374; multivariate random, 101–103; notation,
99–100; triangle inequalities, 100–101

vector-valued moments, 155
visualizing conditional densities, 86–87
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wages: applying central limit theorem to, 169; bivariate distri-
bution of experience and, 78–79; conditional expectation,
94–95; correlations of experience, education and, 92; distri-
bution and continuous random variables, 29–30; histogram
density estimation, 332–333; quantiles, 31; skewness,
32–33

wages and education: Bayes Rule, 11; conditional distri-
bution for discrete X, 83–85; conditional probability, 7;
conditional variance, 98; correlations of experience, 92;
joint events,5–6; joint probabilities, 8; law of iterated

expectations, 96; mean, variance, and standard deviation,
41

weak convergence, 159
weak law of large numbers (WLLN), 149, 153; counter-

examples, 153–154; uniformity over distributions, 157–159;
vector-valued moments, 155

Weibull distribution, 67
Wishart distribution, 146

z-statistic, 146




